Synthesis, structures and applications of electron-rich polyoxometalates

Nadiia I. Gumerovaa, b and Annette Rompela

a Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria. www.bpc.univie.ac.at.

E-Mail: annette.rompel@univie.ac.at

b Vasyl' Stus Donetsk National University Department of Inorganic Chemistry, 21021 Vinnytsia, Ukraine.

Electron-rich polyoxometalates (POMs), known since the early discovery and development of POM chemistry, are POMs incorporating extra electrons upon reduction and comprise an emergent family of different archetypes, structural flexibility and functionality. Here, we describe synthetic strategies to obtain electron-rich POMs with important catalytic, electronic and magnetic properties and discuss their differences and advantages compared to their fully oxidized analogues. This is the first review summarizing the existing knowledge about polyoxometalate reduction, encompassing a comprehensive description of reduced compounds (over 200 structures are reviewed) and the influence the reduction causes on the structure, function and properties of this molecule class.

Polyoxometalates (POMs) are a large group of transformable discrete anionic polynuclear metal-oxo clusters. These compounds contain arrays of corner- and edge-sharing pseudo-octahedrally coordinated MO\textsubscript{6} (M = V, Nb, Mo, W) units, packed to form an ionic core, where the electronic configuration of the metal is usually d0 or d1 (metals in their highest oxidation states).1 These metals are commonly called addenda atoms or peripheral elements and their ionic radii and charge are suitable for O2− coordination. The coordination number of the addenda atoms can be increased from 4 to 6 upon acidification and they are able to form double bonds with unshared terminal oxygens in MO\textsubscript{6} octahedra through p\textsubscript{π}-d\textsubscript{π} interactions. One of the most widely accepted classification of POMs divides them into two groups: 1) isopolyanions (IPAs), which consist of only one type of metal (M) atom, [M\textsubscript{m}O\textsubscript{y}]	extsuperscript{q−}, and 2) heteropolyanions (HPAs), with the general formula [X\textsubscript{r}M\textsubscript{m}O\textsubscript{y}]	extsuperscript{q−}, where X is the so-called heteroatom. POMs have multiple applications in various areas, such as catalysis,2,3 bio- and nanotechnology,4 medicine,5-6 macromolecular crystallography,7-9 electrochemistry,10 material sciences11 and molecular magnetism12 and many of them are related to their redox properties. POMs are often recognized as electron reservoirs because of their strong capacity to bear and release electrons indicating their redox nature.13 POMs can be regarded as soft Lewis bases due to the abundant oxygen atoms that can donate electrons to electron acceptors. However, the addenda metal ions of the polyanion skeletons possess unoccupied orbitals that can accept electrons and thereby act as Lewis acids.2

The reduced, also called electron-rich, POMs typically retain the general structure of their parent molecule and are often characteristically deep blue in color comprising a very large group of complexes known as the “poly blues” or “heteropoly blues” (FIG. 1). Their blue color is the result of intense d–d electron transitions and intervalence charge-transfers.14
Figure 1 | Conventional types of electron-rich POMs.

a Isopolyanions: Linqvist type isopolyanionate, -tungstate \{M₆O₁₉\} (M = Mo, W) and organically functionalized vanadates \{V₆O₄(OR)₉₋₉\} or \{V₆O₄₉₋₉\} \(R=\text{CH}_3, \text{C}_2\text{H}_5, R^1=\text{CH}_3, \text{C}_2\text{H}_5, \text{CH}_2\text{OH}, \text{NO}_2\), decatungstate \{W₁₀O₃₂\} and functionalized decavanadates \{V₁₀O₂₈₋₃₉\} \(R^2=\text{C}_2\text{H}_5, \text{CH}_2\text{OH}\).

Color code: MO₆, blue polyhedra.

b Keggin based anions: classical Keggin anion \{XM₁₂O₄₀\} \(X\) = heteroatom, which is missing in metatungstate, \(X = \text{Mo, W}\); bi- and tetra-capped pseudo-Keggin anions. Color code: MO₆, blue polyhedra; VO₅, green polyhedra. Examples of vanadium spherical anions \{V₁₈O₄₂\} and \{X₅ₖ₉O₄₂\} \(X = \text{As, Sb, Ge, and Si}\). Color code: VO₅, blue polyhedra; X, green spheres. \{V₁₈O₄₂\} is an isopolyanion, however based on the structural classification it is presented in the Keggin based anions section.

c Dawson based anions: classical \{X₂M₁₈O₆₂\} \(X\) = heteroatom, \(M = \text{Mo, W, V}\) and basket-like \{X⊂P₆Mo₁₈\} \(X\) = alkali metal archetypes. Color code: MO₆, blue polyhedral; X = yellow or purple spheres.

d Anderson-like anions: left - \([(\text{MoV})₂O₆]^{5−}\); right - \(X^{IV}_{6}O₆[\text{OCH}_2\text{CH}_3]_₃N(\text{CH}_2\text{CH}_2\text{OH})]^{n+}\) \(X = \text{Li, Na, Mg, Mn, Fe, Co, Ni}\). Color code: V/Mo, green; M, pink; N, blue; C, violet; O, red.
The most prominent reduced POMs are the mixed-valence molybdenum blue Mo\(^{V}/Mo^{VI}\) “giant wheels” based on \{Mo\(_{154}\}\) units, which are obtained by partial reduction of Na\(_2\)MoO\(_4\) with a reducing agent (e.g. N\(_2\)H\(_4\), NH\(_2\)OH, SnCl\(_2\)) in acidic solutions.\(^{15,16}\) “Heteropoly ‘browns’” are polyoxotungstates (POTs) generated by spontaneous intraionic disproportionation of the W\(^V\) atoms in the “blue” species under acidic conditions yielding more highly reduced W\(^{IV}/O_6\) octahedra.\(^{17,18}\)

The added electrons can be either localized on a metal ion or delocalized as “extra” electrons over a number of metal ions leading to an increased electron density on the terminal oxygen ions of the POM. The delocalized electrons can be considered either as thermally activated electrons hopping from one addendum ion to the next or as electron ground-state delocalization. The latter presumably involves \(\pi\) bonding through bridging oxygens from the reduced metal ion M\(^V\) to its oxidized neighbor addendum M\(^{VI}\).\(^{14}\)

The capacity to reduce a particular POM depends on the charge to nuclearity ratio and for heteropolyanions the kind and oxidation state of the heteroatoms must be taken into consideration. In 1972, Pope\(^{19}\) divided all POMs into three types: type I, which comprises polyanions in which each addendum atom has one unshared terminal oxo ligand, type II, characterized by two unshared terminal oxo ligands per addendum atom, and type III, as a combination of the two former. Pope predicted that only type I and III polyanions can be reversibly reduced. According to the molecular orbital theory of oxo-type octahedral complexes, species with one unshared oxygen (type I) have one non-bonding \(t_{2g}\) orbital, which can accommodate one or two electrons by reduction, however, anions with two unshared oxygens (type II) lack the non-bonding \(t_{2g}\) orbital, because in the orbitals participate in the \(\pi\)-bonding.\(^{20}\) Consistent with this early paradigm, up to date there is no data about reduction of Anderson-type anions ([XM\(_6\)O\(_{24}\)H\(_x\)]\(^–\)), X = heteroatom; M = Mo, W; x = 0 – 6) or octamolybdates ([Mo\(_8\)O\(_{26}\)]\(^–\)), which belong to type II POMs. However, it is possible to reduce the heptamolybdate anion [Mo\(^{VI}/O_6\)\(^{–}\)] (type II by Pope classification) photochemically through the formation of an intermediate complex bearing only one unshared oxygen atom as in type I.\(^{21–22}\)

Polyoxomolybdates (POMos) are more readily reduced than their isostructural POTs, and therefore Mo ions are preferentially reduced in mixed-metal Mo/W POMs.\(^{23}\) The isostructural POMos have potentials that are about 400 mV more positive than the corresponding POTs, for example, the one-electron reduction potential in acetone for \(\alpha\)-PW\(_{12}\) is \(-895\) mV, whereas for \(\alpha\)-PMo\(_{12}\) it is \(-468\) mV.\(^{24}\) In POMs exhibiting the common Keggin structure [XM\(_{12}\)O\(_{40}\)]\(^–\) (X = heteroatom, M = Mo, W, Nb), which consists of 12 addenda atoms, the number of accepted electrons can vary from 1\(^{25}\) to 12\(^{26}\) for POMos, but for the analogous POTs the maximum number of “blue” electrons is 6\(^{18}\) (TABLE 1). Vanadium addenda ions accept electrons even better than molybdenum ions (one-electron reduction potential for \(\alpha\)-PVW\(_{11}\) is 600 mV\(^{10}\)). It has been demonstrated that in a spherical \{V\(_{18}\)O\(_{42}\}\) structure all vanadium ions are reduced to V\(^{IV}\) leading to an accepted number of 18 electrons.

POMs can be reduced in different ways, for example, photochemically\(^{21,27,28}\), electrolytically\(^{4}\) and in the presence of reducing reagents (metals, B\(_2\)H\(_6\), NaBH\(_4\), N\(_2\)H\(_4\), NH\(_2\)OH, H\(_2\)S, SO\(_2\), SO\(_3\)^{2–}, S\(_2\)O\(_3\)^{2–}, S\(_2\)O\(_4\)^{2–}, SnCl\(_2\), MoCl\(_5\), MoOCl\(_5\)^{2–}, Mohr’s salt, formic acid, ethanol, ascorbic acid, tartaric acid, thiourea, hydroquinone, D-glucose, sucrose, etc.). Under hydrothermal conditions, Mo\(^{VI}\) and W\(^{VI}\) can accept one or two electrons\(^1\) and thus the vast majority of reduced POMs are synthesized by the hydrothermal method. Reduced POMos are often air-stable, whereas reduced POTs are typically air-sensitive.\(^{14}\) Various oxidants, which contain O\(_2\) or H\(_2\)O\(_2\), restore reduced POMs to the non-reduced ones. Since the reduction increases the nucleophilicity of the POMs, transition metal ions act as electrophiles and stabilize the POMs through covalent attachments.\(^{26}\)
The characterization of reduced POMs can be challenging, especially in the case of mixed-metal compounds, where the usage of multiple complementary physical techniques is sometimes necessary just to determine the compound’s formulation. A detection of the number and structural positions of the different metal centers can be achieved by single-crystal X-ray diffraction complemented by elemental analysis.

Table 1. Number of reduced electrons in POMs based on the Keggin structure XM_{12} (X = heteroatom; M = Mo, W).

<table>
<thead>
<tr>
<th>Type of addenda ions</th>
<th>No. of accepted electrons min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keggin type XM_{12} (12 addenda ions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M = \text{Mo}$</td>
<td>1^{25}</td>
<td>12^{27}</td>
</tr>
<tr>
<td>$M = \text{W}$</td>
<td>1^{120}</td>
<td>6^{18}</td>
</tr>
<tr>
<td>$M = \text{Mo, W}$</td>
<td>2^{269}</td>
<td>8^{109}</td>
</tr>
<tr>
<td>Bi-capped Keggin type $\text{XM}_{12}V_2$ (14 addenda ions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M = \text{Mo}$</td>
<td>3^{129}</td>
<td>8^{130}</td>
</tr>
<tr>
<td>$M = \text{V, Mo}$</td>
<td>2^{139}</td>
<td>6^{140}</td>
</tr>
<tr>
<td>$M = \text{W}$</td>
<td>4^{149}</td>
<td>4^{149}</td>
</tr>
<tr>
<td>Tetra-capped Keggin type $\text{XM}_{8}V_8$ (16 addenda ions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M = \text{Mo}$</td>
<td>8^{157}</td>
<td>13^{158}</td>
</tr>
</tbody>
</table>

To obtain the number of electrons and their location and degree of delocalization in the POMs is a more challenging approach. Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) can give insights into the valence of the metal centers, while magnetic measurements can indicate the number of unpaired electrons. In solution, redox titrations, electrochemistry, and UV-visible spectrophotometry are most useful for determining the exact degree of reduction. Paramagnetic electron-rich POMs are predominantly studied by EPR spectroscopy, while diamagnetic ones are investigated by NMR spectroscopy in solution.29 Computational chemistry has also become increasingly accurate and affordable for elucidating the electronic structure of reduced POMs.30 The theoretical analyses based on the Anderson-Hubbard ideas using quantum-chemical density functional theory (DFT) and ab initio calculations or the parametric solution of exchange and delocalization problem provide a basis for further investigation of the multinuclear mixed-valence clusters.

As in the case of oxidized POMs reduced anions have been found the widest application as catalysts, due to their resistance to oxidative decomposition, high thermal stability, and sensitivity to light and electricity.$^{27, 32-35}$ Almost all types of reduced POMs with different degree of reduction demonstrate electrocatalytic activity and have been applied as reductive and oxidative electrocatalysts. The outstanding photocatalytic activity of one-electron reduced decatungstate $[\text{H}^+\text{W}_{10}\text{O}_{32}]^{5-}$ also should be noted.27 The magnetic susceptibility of a great number of electron-rich POMs was tested, but only some V^{IV}-containing Keggin-based anions were applied as qubits for molecular spintronics35 or as molecular magnet36. Unlike most nanoparticle-protecting ligands, electron-rich POMs can reduce metal cations to colloidal metal(0) particles, which are then stabilized by the oxidized POM anions, and thus the POMs play a dual role, acting as both reducing agents and stabilizing
anions. So far Keggin and Wells-Dawson electron-rich POMs with number of “blue” electrons from 1 to 8 were used as protecting ligands for metal(0) nanoparticles.37 Yamase group over the years tested isopolymolybdates (IPOMos) which can be reduced within cancer cells as anti-cancer agents,38,39 the Lindqvist type POV inhibits Na+/K+-ATPase,40 however application of reduced POMs in biology is not elaborated enough and their role in these processes is not at all understood. The unique stability of the Keggin structure allowing it to take up to 24 electrons makes it possible to use POMs based on this anion as electron storage device.41

Despite the long history of “heteropoly blues” the present review is the first one that summarizes and gives an overview of existing electron-rich POMs. The description of the reduced POMs is divided in two parts. The first section will discuss isopolyanions, where one or more Mo, W or V atoms are in a lower oxidation state, whereas the second part will describe reduced heteropolyanions based on their structural archetype, namely mixed-valence POMs based on Keggin structure (anions with classical and capped Keggin structure), mixed-valence POMs with Wells-Dawson structure and their derivatives (basket-like POMos and borophosphate POMos), Anderson-like fully reduced POVs and POMos and vanadium cluster compounds based on the spherical \{V_{18}O_{42}\} archetype. The reduced giant POMs developed by Müller et al.42 will be left out due to existing reviews about these compounds. Furthermore, the use of POMs as electron-accepting moieties in charge-transfer compounds developed by Hill45 and Kochi46, which are synthesized by co-crystallization with organic donors such as substituted amides, aromatic amines, or tetrathiafulvenes and decamethylferrocene, are not discussed in this review.

Reduced isopolyanions

Isopolymolybdates

The existing data about reduced isopolymolybdates (IPOMos) are centered around the classical Lindqvist [Mo$_6$O$_{19}$]$^{2-}$ archetype47-50 (FIG. 1 a) and heptamolybdate [Mo$_7$O$_{24}$]$^{6-}$ (FIG. 3 a), along with one-time synthesis of IPOMos with structures that do not belong to one of the classical POM archetypes.51-54 The photoreduction of alkylammonium polyoxomolybdates,21 namely hexa-, hepta and octomolybdates, is described by an example of heptamolybdate as the most extensive study. Up to now seven reduced IPOMos, which accepted between one and twelve electrons, were crystallized and investigated by single-crystal XRD (TABLE S1).

One-electron reduction of the Lindqvist anion [Mo$_{VI}$$^{VI}_{6}O_{19}$]$^{2-}$.

According to the Cambridge Crystallographic Data Centre (CCDC) and Inorganic Crystal Structure Database (ICSD), up to date there are no data about crystal structures of reduced isopolymolybdates with Lindqvist structure (FIG. 1 a). However, in 1979, Che and co-workers described the controlled potential electrolysis of [Mo$_6$O$_{19}$]$^{2-}$ in dimethylformamide, which yielded the brown [Mo$_{VI}$$^{VI}_{5}Mo_{VI}O_{19}$]$^{3-}$ ion.48-50 They showed that the reduction step [Mo$_{VI}$$^{VI}_{5}O_{19}$]$^{3-}$ + e$^- \rightleftharpoons$ [Mo$_{VI}$$^{VI}_{4}Mo_{VI}O_{19}$]$^{3-}$ is reversible and assumed that the structure of the parent oxidized form is retained upon reduction. EPR measurements of [Mo$_{VI}$$^{VI}_{4}Mo_{VI}O_{19}$]$^{3-}$ indicate thermal delocalisation of the valence electron with increasing temperature.48,49 The introduction of an electron which is localised on one molybdenum atom has a perturbing effect on the Mo=O bond.47

Mechanism of heptomolybdate [Mo$_{VI}$$^{VI}_{7}O_{24}$]$^{6-}$ reduction.

According to Pope’s hypothesis19 the heptamolybdate anion [Mo$_{VI}$$^{VI}_{7}O_{24}$]$^{6-}$ cannot be reduced due to the presence of two cis-dioxo groups within the MoO$_6$ octahedron (type II POM by Pope classification). Thus, the reduction of [Mo$_{VI}$$^{VI}_{7}O_{24}$]$^{6-}$ has so far only been observed by irradiation with ultraviolet light
(\(\lambda \geq 313\) nm) in aqueous solution\(^{22}\) or in the solid state\(^{21}\) in the presence of the \([\text{NH}_3\text{Pr}]^+\) (Pr – isopropyl) cation since the proposed reduction mechanism involves an interaction between the heptamolybdate anion and the cation (FIG. 2 a). The reduction of Mo\(^{\text{VI}}\) takes place through the formation of an intermediate complex with one unshared oxygen, which is characteristic for type I POMs according to Pope (FIG. 2 a, reaction I). This intermediate enables the reduction reaction and therefore does not contradict Pope’s theory. The EPR spectra revealed a localized octahedral Mo\(^{\text{V}_2}\text{O}_5(\text{OH})\) site resulting from an electron transfer between the anion and the counterion via hydrogen bonding.\(^{21,22}\) The X-ray structure of UV-irradiated single crystal of \([\text{NH}_3\text{Pr}]_6[\text{Mo}^{\text{VI}}_6\text{O}_{24}]\) is in agreement with the EPR by revealing the protonation of the bridged oxygen in the Mo\(^{\text{V}_2}\text{O}_5(\text{OH})\) octahedra (FIG. 3 a).\(^{21}\)

Electron acceptance as a key factor for the formation of new polymolybdate archetypes. The reduction of type II IPOMos (octa- and hepta-anions) in non-aqueous solvents leads to the formation of novel mixed-valent POMos with structures different from the parent anions. \(\alpha\)-Octamolybdate \((\text{Bu}_4\text{N})_4[\text{Mo}^{\text{VI}}_8\text{O}_{26}]\), a typical type II POM, was reduced to the crosslike octamolybdate anion \([\text{Mo}^{\text{V}}_4\text{Mo}^{\text{VI}}_4\text{O}_{24}]^{4-}\) by refluxing it with triethylenetetramine (TETA) and N,N’-dicyclohexylcarbodiimide (DCC) in dry acetonitrile. The \([\text{Mo}^{\text{V}}_4\text{Mo}^{\text{VI}}_4\text{O}_{24}]^{4-}\) anion has an unusual \(\text{Mo}^{\text{V}}_4\text{O}_8\) cubane-like core and was termed \(\chi\)-octamolybdate due to its shape (FIG. 2 b).\(^{52}\)

Cronin et al.\(^{54}\) obtained the novel mixed-valent “shrink-wrapped” anion \([\text{H}_2\text{Mo}^{\text{V}_{12}}\text{O}_{32}]\)^{10-}\ by the addition of protonated hexamethylenetetramine (HMTAH\(^+\) or \(\text{C}_6\text{H}_{13}\text{N}_4^+\)) as cation to the reaction solution that is typically used to for giant Mo cluster systems (MoO\(^{2-}\) and hydrazine). The large organic cation prevents the rapid aggregation of metal-oxide-based polyhedra to clusters with a stable uniform spherical topology. This novel compound contains an unusual platform-like \(\text{Mo}_{12}\) core (FIG. 2 c).\(^{54}\) The four Mo\(^{\text{V}}\) centers comprise two centrosymmetrically related Mo\(^{\text{V}}\)\(_2\) groups (located in the central part of the \([\text{H}_2\text{Mo}^{\text{V}}_4\text{Mo}^{\text{VI}}_8\text{O}_{32}]^{10-}\) cluster core) displaying a short Mo(2)-Mo(3) contact of 2.6427(4) Å, which is characteristic for Mo – Mo single bonds.

The reaction of the Lindqvist nitrosyl derivative \((\text{\textbf{n}}\text{Bu}_4\text{N})_3[\text{Mo}^{\text{VI}}_5\text{O}_{13}(\text{OMe})_4(\text{NO})\{\text{Na-(MeOH)}\}]\) with VCl\(_3\) in methanol yields the two electron reduced nitrosyl decamolybdate \([\text{Mo}^{\text{V}}_2\text{Mo}^{\text{VI}}_7\text{O}_{25}(\text{OMe})_6(\text{MoIINO})]^{-}\) and the reaction of \((\text{\textbf{n}}\text{Bu}_4\text{N})_2[\text{Mo}^{\text{VI}}_5\text{O}_{18}(\text{NO})]\) with N\(_2\)H\(_4\)-2HCl in a mixture of methanol and acetonitrile yields the four-electron reduced nitrosyl decamolybdate \([\text{Mo}^{\text{V}}_4\text{Mo}^{\text{VI}}_5\text{O}_{24}(\text{OMe})_7(\text{MoIINO})]^{2-}\)^{51}\.
Figure 2 | Schematic representation of reduced isopolymolybdates formation. a | UV-induced reduction of heptamolybdate.21,22 b | Formation of the reduced χ-type octomolybdate starting from α-octomolybdate.52 c | Formation of the “shrink-wrapped” anion $[\text{H}_2\text{Mo}^{\text{V}}\text{Mo}^{\text{VI}}_{12}\text{O}_{32}]^{16}\text{−}$.54
The structure of decamolybdate is closely related to that of the well-known decatungstate \(\text{[W}_{10}\text{O}_{32}]^{4-} \) (FIG 1, a) and consists of two halves of five edge-sharing octahedral connected through four quasi-linear Mo-O-Mo bridges. The Hückel calculations demonstrate that the “blue” electrons are circulating around the eight equatorial molybdenum sites as the delocalization is strongly favored by the quasi-linear M-O-Mo bridges.\(^{51}\)

In 1993, Khan and co-workers were the first to obtain \([\text{Me}_2\text{NH}_2]_6[\text{H}_2\text{Mo}^{\text{V}}\text{O}_{12}\text{O}_{28}(\text{OH})_{12}(\text{Mo}^{\text{V}}\text{O}_3)_4]\) by hydrothermal synthesis starting from \(\text{Na}_2\text{MoO}_4, \text{MoO}_3, \text{Mo, C(CH}_2\text{OH})_4, (\text{Et}_4\text{N})\text{Cl}, \text{Me}_3\text{NH}\) and \(\text{H}_2\text{O}.\)^{55} The high degree of reduction of the central \(\epsilon\)-Keggin (BOX 1) core \(\{\text{Mo}^{\text{V}}\text{O}_{40}\}\) significantly increases the basicity of the oxygen atoms on the surface, which allows the aggregation of four electrophilic \(\{\text{Mo}^{\text{V}}\text{O}_3\}\) units. The remarkable flexibility of the host \(\epsilon\)-Keggin cage is demonstrated by encapsulation of two protons. Later Yamase \textit{et al.} showed that \([\text{H}_2\text{Mo}^{\text{V}}\text{O}_{12}\text{O}_{28}(\text{OH})_{12}(\text{Mo}^{\text{V}}\text{O}_3)_4]\)^{6-} can also be formed by reduction in tumor cells from heptamolybdate and confirmed their prediction by long-term photolysis of \([\text{PrNH}_3]_6[\text{Mo}_9\text{O}_{24}]\cdot3\text{H}_2\text{O}\) in aqueous solutions at pH 5–6 yielding the same electron rich anion.\(^{38,53}\)

\([\text{H}_2\text{Mo}^{\text{V}}\text{O}_{12}\text{O}_{28}(\text{OH})_{12}(\text{Mo}^{\text{V}}\text{O}_3)_4]\)^{6-} depressed the proliferation of human cancer cells such as AsPC-1 (IC\(50 = 175 \mu\text{g}\cdot\text{ml}^{-1}\)) pancreatic and MKN-45 (IC\(50 = 40 \mu\text{g}\cdot\text{ml}^{-1}\)) gastric cells \textit{in vitro} and \textit{in vivo}.\(^{39}\) Considering the possibility of photoreduced product formation in biological systems some of the anti-tumour activity of heptamolybdate can probably be traced back to its reduced species.\(^{39}\)

The controlled hydrothermal oxidization of the triangular incomplete cuboidal \([\text{Mo}^{\text{IV}}\text{O}_3(\text{H}_2\text{O})_9]\) precursor in acidic solution, which was synthesized according to Cotton procedure,\(^{56}\) yielded the mixed-valence \(\text{Mo}^{\text{IV}}\text{–Mo}^{\text{VI}}\)

\([\text{H}_2\text{Mo}^{\text{IV}}\text{Mo}^{\text{VI}}\text{O}_{36}\text{py}_6]\cdot\text{H}_2\text{py}_3\cdot2\text{H}_2\text{O}\) (py – pyridine), in which the anion possesses a \(\beta\)-Keggin structure with two \(\{\text{Mo}^{\text{IV}}\text{O}_3\}\) fragments.\(^{57}\) The described anion exhibits Mo–Mo distances ranging from 2.5131(9) to 2.5318(9) Å, which is unusually short for POMos. These short distances are unequivocally indicative of the existence of two Mo–Mo bonded \(\{\text{Mo}^{\text{IV}}\text{O}_3\}\) units and in agreement with bond distances in \([\text{Mo}^{\text{IV}}\text{O}_3(\text{H}_2\text{O})]\)^{4+}. The only known polyoxoanion with \(\text{Mo}^{\text{IV}}\) centres is \([\text{H}_4\text{Mo}^{\text{IV}}\text{Mo}^{\text{VI}}\text{O}_{36}\text{py}_6]\)^{2-}\(\), and it has six terminal pyridine groups stabilizing the six \(\text{Mo}^{\text{IV}}\) ions.\(^{57}\)

Isopolytungstates

Among the highly diverse class of isopolytungstates, decatungstate \([\text{W}^{\text{VI}}\text{O}_{10}\text{O}_{32}]^{4-}\) and metatungstate \([\text{H}_2\text{W}^{\text{VI}}\text{O}_{12}\text{O}_{40}]^{6-}\) are most susceptible to electron acceptance. Metatungstate demonstrated remarkable electron storage capacity as it can accommodate up to 24 electrons.\(^{58}\) Decatungstate can accept a maximum of two electrons. Up to now eight reduced isopolytungstates (IPTs), which accepted between one and up to six electrons, were crystallized and investigated by single-crystal XRD (TABLE S1).

One-electron reduction of the Lindqvist anion \([\text{W}^{\text{VI}}\text{O}_{19}]^{2-}\). Reduced IPTs of the Lindqvist-type anion with one accepted electron \([\text{W}^{\text{VI}}\text{O}_{19}]^{3-}\) were synthesized hydrothermally in the presence of metallic V or Mo as reducing agent.\(^{58}\) The existence of the reduced tungsten sites was confirmed by manganometric titrations.\(^{59}\) EPR analysis showed that the extra electron in \([\text{W}^{\text{VI}}\text{O}_{19}]^{3-}\) is delocalized over all six W centers via intramolecular electron hopping between the metal centers resulting in a rapid conversion of \(\text{W}^{\text{VI}}\text{–O–W}^{\text{VI}}\) – into \(\text{W}^{\text{VI}}\text{–O–W}^{\text{V}}\) – and so on.\(^{48,59}\) Another procedure to obtain the reduced Lindqvist-type IPT is the synthesis of the electron donor-acceptor complex \((\text{CpFeCp})_3[\text{W}^{\text{VI}}\text{O}_{19}]\) \((\text{CpFeCp} = \text{Fe}(\text{C}_5\text{H}_5)_2)\) from orthotungstate \(\text{WO}_4^{2-}\) and ferrocene \(\text{Fe}(\text{C}_5\text{H}_5)_2\) with no other reducing agent demonstrating that ferrocene acts as an effective agent to reduce \(\text{WO}_4^{2-}\) to \(\text{W}^{\text{VI}}\).\(^{60}\)
Electron storage capacity of metatungstate \([H_2W_{12}O_{40}]^{6-}\). Metatungstate \([H_2W_{12}O_{40}]^{6-}\) exhibits the \(\alpha\)-Keggin structure (BOX 1) with two non-exchangeable protons in a tetrahedral cavity, which is formed by four trinuclear capping units. In 1976, Launay showed that metatungtate \([H_2WVI_{12}O_{40}]^{6-}\) can be reduced by controlled potential electrolysis to yield the brown form.\(^{58}\) In these brown compounds \(n\) (number of electrons introduced) is a multiple of 6, such as in the following species \(H_8[\text{H}_2\text{W}_{12}O_{40}]^{2-}\) (\(n = 6\)), \(H_{18}[\text{H}_2\text{W}_{12}O_{40}]^{2-}\) (\(n = 12\)) and \(H_36[\text{H}_2\text{W}_{12}O_{40}]^{5+}\) (\(n = 24\)), which could be isolated as solids.\(^{58, 61, 62}\) According to spectral and electrochemical properties, it was suggested that the total reduction process involves the transfer of 6 electrons and 6 protons, which is consistent with the localisation of the accepted electrons within a single trinuclear cap \(WIV_3\), where the terminal oxo ligands are protonated to aqua ligands: \((WVI=O)_3 + 6e^- + 6H^+ \rightarrow (WIVH_2O)_3\).\(^{63}\) Launay’s suggestions were confirmed by the synthesis of Rb4\(H_8[\text{H}_2\text{W}_{12}O_{40}]\) and [Bu4N]3\(H_9[\text{H}_2\text{W}_{12}O_{40}]\) with the \(\alpha\)-Keggin (BOX 1) anion \(H_n[\{WIV_3(OH)_2\}_3WVI_9O_{34}(OH)_3](5-n)^-\) (\(n = 1, 2\)) and \(^{183}\)W-NMR\(^7\) and XPS investigations.\(^{61}\) The trinuclear caps \(WIV_3\) of the Keggin structure are proposed to be reduced sequentially.\(^{63}\) The \(6e^-\) reduced anion \([\text{H}_2\{WIV_3(OH)_2\}_3WVI_9O_{34}(OH)_3\}]^{3-}\) can undergo condensation in aqueous solution between pH = 4 and 6.5 forming the highly-nuclearity reduced species \([(XO_4)WIV_3WVI_{17}O_{62}H_x]_y^{2-}\) (\(X = H_2O^{2+}, B_3^+\)).\(^{65}\)

The 24-electron reduced POT (\(\text{NH}_4)_6[\text{H}_2\text{W}_{12}O_{40}]\) yields a fuel cell electrocatalyst towards the oxidation of hydrogen in acid electrolyte.\(^{66}\) This activity may be caused by either the presence of 6d vacant orbitals similar to the conventional Pt catalysts or reactivity of non-acidic protons in the structure. Moreover, electron-“tungsten brown” metatungstates with reduced three \(WIV\) caps exhibit some electrocatalytic activity.

One and two-electron reduction in catalytic active decatungstates. Decatungstate \([WVI_{10}O_{32}]^{6-}\) is well-known for its high photocatalytic activity.\(^{67}\) The structure of \([WVI_{10}O_{32}]^{6-}\) consists of two lacunary Lindquist \([W_5O_{14}]^{2-}\) fragments linked by four corner-sharing oxygens with an unusually wide \(\text{OWW}\) angle of 178° (FIG. 1 a).\(^{68}\) The one-electron-reduced complex \([WVIWVI_9O_{32}]^{5-}\) was prepared by controlled-potential electrolysis of \([W_{10}O_{32}]^{6-}\) in N,N-dimethylformamide (DMF).\(^{69}\) Long-term UV irradiation of the oxidized parent decatungstate leads to the formation of a mixture of protonated one- and two-electron reduced species, namely \([\text{HW}VIWVI_9O_{32}]^{4-}\) and \([\text{H}_2WV_2WVI_8O_{32}]^{3-}\), respectively.\(^{70, 71}\) The unprotonated two-electron reduced \([WVIWVI_9O_{32}]^{6-}\) anion was prepared by controlled-potential electrolysis in the absence of protic media.\(^{72}\) The structure of the decatungstate anion is obviously not changed by the reduction. Based on EPR\(^7\) and \(^{183}\)W NMR spectra,\(^ {21}\) it was concluded that in both the one- and two-electron reduced anions, \([WVIWVI_9O_{32}]^{5-}\) and \([WVIWVI_9O_{32}]^{6-}\), respectively, the extra electrons are principally located at the equatorial sites (four edge-shared within a plane octahedra) (FIG. 1 a).

Decatungstates have been successfully applied by Hill and co-workers\(^ {27, 73, 74}\) during the homogeneous photocatalytic oxidation of various organic substrates, such as alkanes, alkenes, alcohols, and amines due to the wide range of redox potentials of \([W_{10}O_{32}]\), as well as the reversibility in their multielectron reductions. Mechanistic studies have shown that the same one-electron reduced form of decatungstate \([\text{HW}VIWVI_9O_{32}]^{5-}\) is formed during the catalytic oxidation, which may react quantitatively with oxygen to form hydrogen peroxide and/or organic hydroperoxides as final products.\(^ {75-77}\)

Isopolyvanadates

Polyoxovanadates (POVs) appear to provide structures of sufficient flexibility to allow the existence of multiple oxidation states while retaining structural integrity. The mixed-valent \(V^{IV}/V^{V}\) and fully-reduced \(V^{IV}\); \(V^{III}/V^{IV}\) isopolyvanadates (IPVs) consist
mostly of a variety of vanadium alkoxide structures. Up to now 22 reduced IPVs, which accept between one and six electrons, were crystallized and investigated by single-crystal XRD (TABLE S1).

Reduced and organically functionalized hexavanadates. The Lindqvist vanadium core {V$_6$O$_{19}$} (FIG. 1 a) is unstable due to the high charge/volume ratio. The most high-valent (VVII), mixed-valent (VIV/VV, VV/VVI) or fully reduced (VIV; VIV/VVII) hexavanadates were obtained as alkoxo-derivatives, in which varying numbers of double bridged oxo groups of {V$_6$O$_{25}$} are replaced by alkoxy oxygen donors of polyol ligands (FIG. 1 a). Zubieta _et al._ were successful in synthesizing a variety of hexavanadate derivatives with the help of trisalkoxo μ-bridging moieties revealing a rich class of VIV/VV mixed valence compounds. The oxovandium clusters can be formed under solvothermal conditions: 1) by a comproportionation reaction of precursors with vanadium atoms in oxidation states +3 (V$_2$O$_3$) and +5 (VO$_3^-$, V$_2$O$_5$)80; 2) by reducing the fully oxidized compound with reducing agents (1,2-diphenylhydrazine, N$_2$H$_5$OH etc.) 79,82; 3) by reaction of VO(OR)$_3$ (R = Me, Et, Bu) with BH$_4^-$ in methanol. $^{83-87}$

The solvothermal reaction of VOSO$_4$ with p-tert-butylcalix[4]arene in methanol under anaerobic conditions yielded the VIII/VIV hexavanadate [VIVVVVIVVIVO$_6$(OCH$_3$)$_8$(calix)(CH$_3$OH)$]^-$. 88 In each mixed-valence or fully reduced cluster six vanadium nuclei surround one oxo anion forming a nearly regular octahedron (FIG. 1 a). EPR studies and DFT calculations showed that the d-electrons of the VIV nuclei can be extensively delocalized in the highly symmetrical {V$_6$O$_{19}$} hexavanadate core. 83,86 The magnetic exchange interactions between unpaired d-electrons in the Lindqvist core-structure are prone to geometric spin frustration. 79

Matson _et al._ reported the synthesis and characterization of iron-substituted Lindqvist type alkoxo-vanadates [V$^{'IV}$VIIO$_6$(OCH$_3$)$_4$Fe^{III}X] (X = Cl, OTf, OTf – trifluoromethylsulfonate)89, which are capable to accept up to four electrons while retaining the +3 oxidation state of the iron atom. 90

Xu _et al._ have studied the influence of five functionalized hexavanadates, including one reduced IPVs [V$^{'IV}$VIIO$_{12}$(OH)$_2$][(OCH$_2$)$_3$CNO$_2$)$_2$]91, on Na$^+$/K$^+$-ATPase activity _in vitro_. 40 Dose dependent Na$^+$/K$^+$-ATPase inhibition was obtained for all investigated compounds, however, the obtained results indicate that the most potent inhibitor is the reduced compound (IC$_{50}$ = (1.8 ± 0.5)·10$^{-5}$ mol·L$^{-1}$).

Classically functionalized and “wheel”-type decavanadates. Exploiting the hydrothermal synthetic procedure as in the case of alkoxohexavanadates, Zubieta and co-workers obtained clusters based on the fully {VVV$_{10}$O$_{28}$} or partially {V$^{'IV}$V$^{'IV}$V$_{10}$O$_{28}$} reduced cores with variable numbers of doubly and triply bridging oxo groups being replaced by the alkoxy oxygen donors of tris-alkoxy ligands (FIG. 1 a). 81,86

In 1982, Heitner-Wirguin and co-workers firstly reported on the synthesis and structure of the mixed-valence wheel-like decavanadate anion [{V$^{'IV}$O}$V^{'IV}$O$_{24}^{4-}$], which was obtained by the hydrolytic dissociation of V$^{'IV}$O(acac)$_2$ in methylene chloride or chloroform in the presence of CuII(acac)$_2$ or ZnII(acac)$_2$. 92,93 Later, an improved synthetic procedure, which does not require the use of CuII(acac)$_2$ or ZnII(acac)$_2$ anymore, was reported together with a magnetic susceptibility study by Baxter and Wolczanski. 94,95 The structure of [{V$^{'IV}$O}$V^{'IV}$O$_{24}^{4-}$ is absolutely different from d0 decavanadate [VIVO$_{10}$O$_{28}^-$. 96 The macrocyclic [V$^{'IV}$O$_{18}^{4-}$ ligand, which binds two vanadyl cations [V$^{'IV}$O]$^{2+}$ at the center. The reaction of the macrocyclic [V$^{'IV}$O$_{18}^{4-}$ ligand with CuII affords a heteropoly complex, namely [CuII(V$^{'IV}$O)$_{18}^{4-}$], of which structure is similar to that of [{V$^{'IV}$O}$V^{'IV}$O$_{24}^{4-}$.96

The second synthetic way to obtain the wheel cluster [{V$^{'IV}$O}$V^{'IV}$O$_{24}^{4-}$ is the condensation of [V$^{'IV}$O$_{12}^{3-}$ upon irradiation with visible light. 97,98

Reduced heteropolyanions
Keggin-type polyoxometalates

The Keggin structure was first reported in 1933 during the analysis of 12-tungstophosphoric acid and has become the de facto emblem of POM chemistry. The bulk of publications in this field are devoted to Keggin type anions. This ion has the general formula $[\text{XM}_{12}\text{O}_{40}]^n-$, where X is a heteroatom that is coordinated by four O atoms leading to its tetrahedral geometry, $M = \text{Mo}$ or W, charges range from $n = 2$ ($X = \text{S}^{VI}$) to $n = 7$ ($X = \text{Cu}^I$). Investigations of the Keggin structure revealed five isomers, each resulting from 60° rotation of one, two, three and four $\{\text{M}_3\text{O}_{13}\}$ triad units, respectively, leading to the α, β, γ, δ and ϵ isomers as reported by Baker and Figgis. The arrangements of the M_3O_{13} triads affect the molecular orbital energies and the distances between metal centers, which also in turn affect the electrostatic repulsion. Thus, the stability of fully oxidized Keggin anions decreases in the order $\alpha < \beta < \gamma < \delta < \epsilon$. The reduced clusters behave differently. The β form becomes the most stable isomer after the acceptance of the second and fourth electron as the LUMO is lower than that in the α form. The γ isomer also has a low LUMO and gains stability upon reduction, but not enough to be competitive with the β isomer. The other isomers, δ and ϵ, are much more unstable than α or β in any reduction state and require transition metal support. Remarkably, in reduced Keggin POMs resistance to addenda atom substitution can increase due to the additional energy factor of orbital overlaps for the delocalization of the added electrons. Also addenda substitution for a lower charged metal increases total negative charge of the already reduced anion, which can lead to its instability. A general way to stabilize the Keggin anions with higher negative charges after reduction is to introduce electrophilic capping groups such as $\{\text{V}^V\text{O}\}^{3+}$ or $\{\text{V}^IV\text{O}\}^{2+}$. The structures, which are formed after such capping, have become known as “pseudo-Keggin” structures.

Electron accepting properties of Keggin-type polyoxomolybdates. The synthesis of the heteropoly acid from orthophosphate PO_4^{3-} and molybdate MoO_4^{2-} under acidic conditions and its subsequent reduction to form an intensely coloured phosphomolybdenum blue $[\text{PMo}_{\text{n}}\text{Mo}^{VI}_{12-n}\text{O}_{40}]^{(2m^-)}$ was firstly reported by Scheele in 1783. However, its discovery is widely attributed to Berzelius in 1826. Especially the molybdate blues have long been used for colorimetric determination of trace levels of elements that readily form Keggin anions, e.g. for analysis of phosphates and silicates.
So far seventeen reduced POMs of Keggin structure, which accept between one and up to twelve electrons, were
crystallized and investigated by single-crystal XRD (TABLE S2).

The redox behavior of Keggin-type POMs is highly acid-dependent. Launary et al. reported on the pH effect of the
first three reversible two-electron reductions of [SiMoVI12O40]4+. The two-electron waves are shifted to more negative
potential when the pH is higher and they are eventually split into one-electron waves. This takes place at pH 2.4 for the first,
pH 9.5 for the second and pH 13 for the third wave giving rise to the formation of [SiMoVMoVI11O40]5−, [SiMoV2MoVI10O40]6− and
[SiMo3V2MoVI9O40]7−, respectively.48, 100

The reduced α- and β-Keggin POMs can be synthesized electrochemically101,102 or by hydrothermal reactions.103,104 Reduced POMs exhibiting the ε-Keggin structure can only be synthesized hydrothermally with the support of TMII-
units (TM−transition metal, e.g. NiII, CoII).26, 108-111 Organic ligands (e.g. 1,2-propanediamine) or reagents bearing a
heteroatom (e.g. As2O3)109 can display reducing effects on the addenda atoms. A complex containing an ε-core is
[Na(MoVIO3)4MoV12(OH)12O28]7− possessing Mo-capping units and a central cavity, which is capable of accommodating protons
or metal cations.55 This compound was obtained in aqueous solution from heptamolybdate and phenylphosphonic acid with
hydrazinium dichloride N2H4·2HCl as reducing agent. The magnetic properties of electron-rich Keggin-type POMs were
investigated and in the case of [GeMoV8MoVI4O40]12− and [(As VO4)MoV8WVI43(μ2–OH)3]8− the negative Weiss constants
indicate the possible occurrence of weak antiferromagnetic interactions between the transition metal centers.109 On the
other hand, the magnetic properties of the compound with fully reduced addenda atoms [MoV12O30(µ-OH)10H2{NiII4(H2O)12}]
(FIG. 3 a)10 are dominated by exchange interactions between the four NiII centers, while the strong interactions between the
12 Mo (4d3) centers result in six MoV−MoV dumbbells with −MoMo− single bonds as is the case
in[Na(MoVIO3)4MoV12(OH)12O28]7−.55

The CoII-capped ε-Keggin anion [(CoIIbpy)2(PMoV4MoVI8O40)]3− has been checked for catalyzing water oxidation to
generate O2 under visible light irradiation using [Ru(bpy)3]2+ as photosensitizer and S2O82− as the sacrificial electron
acceptor.31 Although the stability of POMs under photocatalytic conditions was demonstrated by dynamic light scattering
(DLS), extraction experiment, and UV-Vis and FT-IR spectroscopy, it should be noted that bipyridine and CoIII-CoII-oxide, which
can be formed under these conditions, are well established to be efficient water oxidation catalysts. A turnover number of up
to 49 sec−1 was observed by the authors,31 which shows that this reduced POMs could be an efficient visible light-driven
catalysts for water oxidation. The photocatalytic water oxidation activity of [(CoIIbpy)2(PMoV4MoVI8O40)]3− resembles that of
POMs with non-reduced addenda atoms.112

Nobel metal nanoparticles can be formed in water at room temperature in the presence of four electron-reduced
Keggin POMO H2[B-PMoV4MoVI8O40] and are stable for several months.113-115 In this case the electron-rich POMs play the role
of the reductant and stabilizer.

The salt of doubly reduced [PMoV2MoVI10O40]5− anion with benzimidazolium exhibited a dielectric anomaly, which was
caused by electric dipole relaxation.116 This dipole relaxation can be explained by a hopping process of the blue electrons and
a charge relaxation from a disproportionated structure to a fully delocalized structure due to distortion of the Keggin
framework by intermolecular interaction.

POM-molecular cluster batteries based on [PMoVI12O40]3− anion exhibit a large capacity of ca. 270 (A h)/kg in a voltage
range between 1.5 – 4.0 V due to their ability to reversibly accept 24-electrons during charging/discharging process.41
Electron accepting properties of Keggin-type polyoxotungstates. In 1960-1970 Pope and co-workers laid the foundation for the investigation of the reduction processes in Keggin-type heteropolytungstates (HPT). They demonstrated that the electrons can be accepted by Keggin POTs \([XW_12O_{40}]^{n-}\) \((X = P^{V}, Si^{IV}, Fe^{III}, Co^{II})\) without protonation until the total charge of the reduced species is \(-6\) in acidic media and \(-8\) in neutral media. Further reduction is always accompanied by protonation keeping the overall ionic charge at \(-6\) or \(-8\). So far eleven reduced HPTs exhibiting the Keggin structure \(\{XW^{V/VI}_{12}O_{40}\}\), which accept between one and up to six electrons, were crystallized and investigated by single-crystal XRD (TABLE S2).

Reduced Keggin type POTs could be so far synthesized electrochemically or under hydrothermal conditions. One-electron reduced POTs were obtained at \(pH = 4.3 – 5.5\), whereas the higher reduced electron-rich Keggin POTs were obtained at higher \(pH\). As previously noted the “blue” electrons do not alter the crystal structure of the parent POT anion. Detailed analysis of structural parameters of \(\alpha-[Co^{II}W^{VI}_{12}O_{40}]^{6-}\) and \(\alpha-[Co^{II}W^{V}_{2}W^{VI}_{10}O_{40}]^{8-}\) showed that except for a shortening of each central \(\text{Co}-\text{O}^{\text{tetrahedral}}\) distance by 0.03 Å and a consequent corresponding increase in W–O tetrahedra distances, the reduction caused remarkably little change in the interatomic distances within the complex.

Figure 3 | Synthesis of electron-rich POMs based on the Keggin anion. a | Schematic representation of the formation process of fully reduced Ni^{II}-supported \([Mo^{V}_{12}O_{30}(\mu-OH)_{10}H_{2}(Ni^{II}_{4}(H_{2}O)_{12})]\) anion.

b | General scheme of bivanadyl bi-capped Keggin
POMs formation. c | pH-depended formation of monomeric \([\text{SiMo}^\text{IV}_{6}\text{Mo}^\text{VI}_{10}\text{O}_{44}]^{4-}\) and dimeric \([\text{Si}_2\text{Mo}^\text{IV}_{14}\text{Mo}^\text{VI}_{12}\text{O}_{46}(\text{H}_2\text{O})_2]^{6-}\) bi-capped anions.\(^{152}\) d | Schematic representation of the formation of transition metal supported tetra-capped anion (e.g. \([\text{AsMo}^\text{IV}_{8}\text{Mo}^\text{VI}_{4}\text{V}^\text{IV}_{4}\text{O}_{44}]^{5-}\) connected covalently with two \{\text{Co(phen)}_2(\text{H}_2\text{O})\}\).\(^{155}\)

Using \(^{27}\)Al NMR Hill et al. demonstrated the defined electron exchange between a fully oxidized \(\alpha-[\text{Al}^\text{III}^\text{IV}_{12}\text{O}_{40}]^{5-}\) and the one-electron reduced \(\alpha-[\text{Al}^\text{III}^\text{IV}_{11}\text{W}_{11}^\text{VI}_{11}\text{O}_{40}]^{6-}\).\(^{125}\) The electron-rich \(\alpha-[\text{Al}^\text{III}^\text{IV}_{11}\text{W}_{11}^\text{VI}_{11}\text{O}_{40}]^{6-}\) is stable with respect to disproportionation, structural isomerization and hydrolysis (from pH 0 to 7). In addition, it remains unprotonated over a wide pH range (pH 1.8 to 7.5) and is free of Na\(^+\) ion pairing with Na\(^+\) (C >1 M).

Stability of the \([\text{SiW}^\text{IV}_{6}\text{W}^\text{VI}_{11}\text{O}_{40}]^{10-}\) "brown" anion in acid solution depends on the nature of the Keggin isomer and decreases in the order \(\alpha > \beta > \gamma\), which can be correlated with the structural modifications induced by rotation of the \(\{\text{W}^\text{IV}_{1}\text{O}_{13}\}\) groups. The 4e\(^-\) blue anion \([\text{SiW}^\text{IV}_{6}\text{W}^\text{VI}_{8}\text{O}_{40}]^{8-}\) is stable in acidic solution with the \(\beta\)-isomer being more stable than the corresponding \(\alpha\) and \(\gamma\) forms.\(^{126}\)

Coronado and co-workers investigated the influence of the electron transfer on the magnetic properties of the two-electron reduced \([\text{W}_2\text{O}_{18}]^{12-}\) fragment of the \(\alpha-[\text{PW}^\text{V}_{10}\text{W}^\text{VI}_{11}\text{O}_{40}]^{5-}\) anion.\(^{127}\) They showed that the electron transfer between edge-sharing and corner-sharing WO\(_6\) octahedra have very close energy values and induce a large energy gap between the singlet ground state and the lowest triplet states. These data explain the diamagnetic properties of the mixed-valence Keggin ions reduced by two electrons and can be used for other electron-rich POM archetypes.

Neumann and co-workers have recently shown that \(\text{H}_5[\text{PW}^\text{V}_{2}\text{W}^\text{VI}_{10}\text{O}_{40}]\) is a photoactive electron and proton donor by light-induced excitation of the intervalence charge transfer band.\(^{12}\) The reduced POT \(\text{H}_5[\text{PW}^\text{V}_{8}\text{W}^\text{VI}_{11}\text{O}_{40}]\) was used to transfer electrons to the di-rhenium catalyst that catalyzes the selective reduction of CO\(_2\) to CO.

The study of reoxidation of photoreduced \([\text{PW}^\text{V}_{11}\text{W}^\text{VI}_{11}\text{O}_{40}]^{4-}\) by hydrogen peroxide, peroxyacetic acid, peroxymonsulfate, peroxydisulfate and dioxygen (O\(_2\)) in the presence of the model pollutant 2-propanol under various conditions provide insight into POM-catalyzed redox reactions in water purification and selective redox applications.\(^{32}\) A unified chain reaction is proposed in which the rate-limiting step is outer-sphere one-electron transfer to oxidants yielding \(\text{OX}^-(\text{OH}, \text{SO}_4^-, \text{CH}_3\text{CO}_2^-\text{)}\). The chain includes a number of \([\text{PW}^\text{V}_{11}\text{W}^\text{VI}_{11}\text{O}_{40}]^{4-}\)-regenerating steps that, with some bulk oxidants, leads to further consumption of bulk oxidant and transformation of pollutant.

The conversions of the three types of olefins catalyzed by \(\text{NaCu}^+\)\(_3\)\((\text{tib})_4[\text{H}_2\text{PW}^\text{V}_{11}\text{O}_{40}][\text{H}_3\text{PW}^\text{V}_{11}\text{O}_{40}]6\text{H}_2\text{O}\) (tib = 1,3,5-tris(1-imida-zoly)benzene), are 98.3% (1-hexene), 95.7% (cyclo hexene), and 97.1% (1-octene), indicating that this compound can be used as an effective catalyst for epoxidation.\(^{120}\) The photochemically reduced (\(\lambda > 320\) nm, propan-2-ol as a sacrificial reagent) tungstosilicate, \([\text{SiW}^\text{IV}_{15}\text{W}^\text{VI}_{11}\text{O}_{40}]^{5-}\), was used to obtain fine metal nanoparticles of Ag, Au, Pd, and Pt, by simple mixing of the corresponding metal ions with reduced polyoxometalates at room temperature.\(^{128}\)

Capped Keggin polyoxometalates

The surface modification of a classical Keggin anion with other groups may adjust or ameliorate the physicochemical properties of the Keggin ion itself. Inorganic (VO) capped Keggin-type derivatives (FIG. 1 b) have been synthesized by hydrothermal technique. These compounds are mainly obtained as bi-capped and tetra-capped bivanadyl POMos, bi-capped
bivanadyl POTs and polyoxoniobates (PONs), and bi-capped bimolybdenum and biantimony POMos do also exist. (TABLE S3, S4)

Redox-properties of bi-capped bivanadyl Mo and mixed Mo/V polyoxometalates. Highly reduced bi-capped bivanadyl mixed-valence molybdenum Keggin anions \(\{XMo^{VI}_{12}O_{40}(V^{IV}O)_{2}\}\) \((X = Si, P, Ge, As, V)^{104,105,129-138}\) or molybdenum-vanadium anions \(\{XMo^{V}_{8}V^{IV}_{2}O_{40}(V^{IV}O)_{2}\}\) \((X = P, V)^{103,139-147}\) were firstly presented by Hill et al.\(^{131}\) in 1996 and proved to be useful building blocks to construct multi-dimensional extended solid materials that show oxidative resistance and act as catalysts in homogeneous oxidation (FIG. 1 b; FIG. 3 b). 26 reduced bi-capped bivanadyl POMos and mixed POMo/Vs, which accept between two and eight electrons, were crystallized and investigated by single-crystal XRD (TABLE S3) up to now.

A number of bi-capped Keggin-type structures have been synthesized by hydrothermal reactions, sometimes supported by organic ligands (bipyridine, 1,10-phenanthroline etc) and transition metals (Co\(^{II}\),\(^{105}\) Cu\(^{I}\),\(^{137}\) Zn\(^{II}\)\(^{134}\) etc). Under these conditions the reactions allow only little control over the stoichiometry or the degree of reduction.

Capping of the \{VO\} units on two opposite sides of \(\alpha\)-Keggin POMs results in an asymmetrical negative charge distribution and polarization of the POMo core making them attractive for asymmetric modification with transition metal cations (e.g. Ni\(^{II}\),\(^{133}\) Cu\(^{I}\),\(^{137}\) Co\(^{II}\)\(^{105}\)). Moreover, the steric orientations of the coordination sites for the capped Keggin POMos are more flexible than those for the uncapped species.

The first reported bi-capped POMo, the \([PMo^{VI}_{6}Mo^{VI}_{6}O_{40}(V^{IV}O)_{2}]^{5-}\) anion,\(^{131}\) can be best described as an \(\alpha\)-Keggin core \([PMO_{12}O_{40}]\) with \{VO\} units capping two opposite pits. Caps are formed through the ligation of four oxygen atoms originating from two opposite \{Mo_{2}O_{4}\} faces to each \{VO\} unit in a square pyramidal manner (FIG. 3 b). DFT calculations\(^{132}\) confirmed Hill’s suggestion that the metal centers in this reduced anion contain eight d electrons: six are accommodated in three symmetry-adapted Mo orbitals, while the other two d electrons are in quasi degenerate linear combinations of the d vanadium orbitals.

By using the Wells-Dawson-type POMo \(H_{2}P_{2}Mo_{19}O_{42}.nH_{2}O\) and \(NH_{4}VO_{3}\) as starting material in a hydrothermal reaction it is possible to obtain another Mo-V bi-capped bivanadyl mixed Mo/V Keggin-type derivative, namely \([PMo^{VI}_{8}Mo^{VI}_{2}V^{IV}_{4}O_{42}]^{5-}\).\(^{147,148}\) The structure of \([PMo^{VI}_{8}Mo^{VI}_{2}V^{IV}_{4}O_{42}]^{5-}\) is similar to that of \([PMo^{VI}_{6}Mo^{VI}_{6}O_{40}(V^{IV}O)_{2}]^{5-}\).\(^{125}\) In the case of bi-capped molybdenum-vanadium anions \(XMo^{V}_{8}V^{IV}_{4}O_{40}(V^{IV}O)_{2}\) \((X = P, V)^{103,139-147}\) the \(\alpha\)-Keggin core is based on a central \{XO\(_4\)\} tetrahedron surrounded by four corner sharing triads of \{Mo\(_2\)V\(_2\)O\(_{13}\)\}, which is composed of two \{MoO\(_6\)\} octahedra and one square \{VO\(_5\)\} pyramid (FIG. 3 b).

Generally, variable-temperature magnetic susceptibility measurements showed the presence of antiferromagnetic interactions among the reduced Mo\(^{V}\) ions plus a paramagnetic contribution from the V\(^{IV}\) ions in \(XMo^{V}_{12}O_{40}(V^{IV}O)_{2}\) \((X = Si, P, Ge, As)\).\(^{133,134,137,138}\) In addition, an antiferromagnetic interaction is possible between the cation (e.g. Co\(^{II}\)) and the V\(^{IV}\) ions, which are directly linked through an oxygen bridge.

Studies of the electrochemical properties of compounds with \(XMo^{V}_{12}O_{40}(VO)_{2}\) \((X = Si, P, Ge, As)^{134,135,139}\) structure revealed similar redox behavior to the parent Keggin \(XMo_{12}O_{40}\), that is, they undergo three two-electron reversible reductions of molybdenum. The V\(^{IV}\)O\(^{2+}\) caps have a slight effect on the electrochemical properties and no redox waves of V\(^{IV}\) can be observed.\(^{134}\)

Bi-capped anions \([PMo^{V}_{12}O_{40}(V^{IV}O)_{2}]^{n-}\) with two localized spins have been proposed as qubits for molecular spintronics.\(^{35}\) Here, the molybdenum core acts as a reservoir for a variable number of delocalized electrons and exhibits weak
magnetic coupling with the two (VO)$_2^+$ units. Through electrical manipulation of the molecular redox potential, the charge of the core can be changed, thus two-qubit gates and qubit readout can be implemented.35

The [HPMo$^{VI}_8$V$^{IV}_4$O$_{40}$(V$^{IV}_2$O$_2$)$_2$]$_2^{2-}$-carbon paste electrode (CPE) exhibits bifunctional electrocatalytic activities, namely reduction of iodate IO$_3^-$ and oxidation of ascorbic acid with electrocatalytic efficiency (CAT) of 57% and 43%, respectively, which are considerably higher than the CAT values for HPMo$^{VI}_{12}$O$_{40}^{2-}$-CPE (16% and 1%).139 Here and throughout it should be noted, that CPEs are quite unstable and some of POM electrochemical features can involve the CPE components.

Redox-properties of bi-capped bivanadyl polyoxotungstates and polyoxoniobates. The only two examples of reduced bi-capped bivanadyl polyoxotungstates, [V$^{IV}_8$W$^{VI}_2$W$^{VI}_{10}$O$_{40}$(V$^{IV}_2$O$_2$)$_2$]$_2$ -149 and [As$^{V}_8$W$^{VI}_2$V$^{IV}_6$V$^{IV}_4$O$_{42}$]$_7$ -122 have been reported recently (TABLE S3). Photocatalytic studies indicate that the compound [Ni$^{II}_L_4$V$^{IV}_8$W$^{VI}_{10}$O$_{40}$(V$^{IV}_2$O$_2$)$_2$] ($L = 1,4$-bis(imidazol-1-ylmethyl)benzene) not only serves as an active photocatalyst for the degradation of dye molecules but also exhibits selective photocatalytic activity for the degradation of cationic dyes in aqueous solution.149 Furthermore, two bi-capped bivanadyl structures are known for polyoxoniobate: fully-oxidized [V$^{IV}_8$Nb$^{VI}_{12}$O$_{40}$(V$^{IV}_2$O$_2$)$_9$] - and the three-electron reduced [V$^{IV}_8$Nb$^{IV}_{12}$O$_{40}$(V$^{IV}_2$O$_2$)$_{11}$] -150,151 They were synthesized under similar hydrothermal conditions but for the synthesis of the reduced anion ethylenediamine was presented in the reaction mixture.

Redox-properties of bi-capped bimolybdenum and biantimony polyoxomolybdates. The formation of molybdenum-capped anions is also possible if no vanadium compound is present in the reaction mixture. Six reduced bimolybdenum and biantimony POMos, which accept between four and eight electrons, were crystallized and investigated by single-crystal XRD (TABLE S3).

Polyxoanion [SiMo$^{IV}_4$Mo$^{VI}_{10}$O$_{44}$]$_{4-}$152 which was synthesized by reaction of the oxothio precursor [Mo$_{12}$S$_{12}$O$_{12}$(OH)$_{12}$$(H_2O)_6$]$^{4+}$ with hydrochloric acid, silicate anions, and tetramethylammonium hydroxide under hydrothermal conditions, is capped by {Mo$^{IV}_4$O$_2$} subunits sharing two O atoms to form a dimer. At high temperature and low pH, a hypothetical five-electron reduced-Keggin structure with two {Mo$^{IV}_4$O$_2$} capping units is obtained. This electron-rich species dimerizes to form [Si$_2$Mo$^{IV}_{14}$Mo$^{IV}_{14}$O$_{84}$(H$_2$O)$_2$]$_6$$^{6-}$ (FIG. 3 c).152

The [AlMo$^{V}_4$Mo$^{VI}_{8}$O$_{40}$(Mo$^{IV}_2$O$_2$)]$_{5-}$153 and [(As$^{V}_4$O$_4$)Mo$^{VI}_8$Mo$^{IV}_6$O$_{35}$(Mo$^{IV}_2$O$_2$)]$_{5-}$154 anions also demonstrate bi-capped Keggin structures. The attachment of capping units to the Keggin-type polyanion can be described as a Lewis-type interaction between the four-electron-reduced {XMo$^{IV}_4$Mo$^{IV}_{10}$O$_{40}$} species, acting as a base, and the {Mo$^{IV}_2$O$_2$} as Lewis acid, which exhibit a structure stabilizing effect.

The catalytic property of [(As$^{V}_4$O$_4$)Mo$^{VI}_8$Mo$^{IV}_6$O$_{35}$(Mo$^{IV}_2$O$_2$)]$_{5-}$153 has been explored showing that it is able to convert styrene to benzaldehyde (85.2%). In the same time the catalytic properties of [AlMo$^{V}_4$Mo$^{VI}_{8}$O$_{40}$(Mo$^{IV}_2$O$_2$)]$_{5-}$153 were evaluated in the oxidation of cyclohexanol to cyclohexanone. A conversion rate of 26.7% with a high selectivity of 98.5% for the conversion to cyclohexanone was reported. It has to be noted that a blank reaction without POMo gives only 4.2 % of conversion.

POMs containing antimony oxide units often play an important role in heterogeneous oxidation catalysis. Moreover, antimony cations also have a stabilizing effect on polyoxometalates at high temperatures. The bi-capped antimony α-Keggin anion [PMo$^{V}_5$Mo$^{VI}_{7}$Sb$^{III}_8$O$_{40}$]$_{2-}$ can be synthesized either under hydrothermal conditions in the system of Sb$_2$O$_3$ – (NH$_4$)$_6$Mo$_7$O$_{24}$ – H$_3$PO$_4$ – en –H$_2$O 155,156 or by reduction of (Bu$_4$N)$_3$[PMo$_{12}$O$_{40}$] with six mole-equivalents of Na/Hg
amalgam in the presence of two mole-equivalents of SbCl₃ following to the scheme:

$$[\text{PMo}_{12}O_{40}]^{3-} + 2 \text{SbCl}_3 + 6e \rightarrow [\text{PMo}_{12}O_{40}\text{Sb}_2]^{3-} + 6\text{Cl}^-.$$

Redox-properties of tetra-capped pseudo-Keggin polyoxoanions. In contrast to bi-capped Keggin systems tetra-capped structures of electron-rich POMs are known only for mixed Mo/V systems with the general formula \((\text{XMo}_8^{\text{VII-VIII}}\text{V}_8^{\text{V-V}}), \text{X} = \text{P}, \text{V}, \text{As}\) (FIG. 1 b; FIG. 4 d). 103, 122, 157-165 19 reduced tetra-capped pseudo Keggin polyoxoanions, which accept between eight and thirteen electron, were crystallized and investigated by single-crystal XRD so far (TABLE S4).

All tetra-capped compounds are synthesized in a similar fashion. When applying hydrothermal synthesis, the heteropolyacids \(\text{H}_3\text{XMo}_{12}\text{O}_{40}\) \((\text{X} = \text{P, As})\) and \(\text{NH}_4\text{VVO}_3\) are often used as the starting material. Wang and coworkers pointed out that the use of \(\text{NH}_4\text{VO}_3\) as precursor in the transformation reaction of the Keggin into the pseudo-Keggin structure may increase the negative charge density on the external oxygen atoms leading to a more reactive POM anion. 159 Using \(\text{H}_2\text{C}_2\text{O}_4\cdot2\text{H}_2\text{O}\) during the synthesis not only decreases the pH of the reaction system but also can act as a reducing agent. 157

\([(\text{XO}_4)\text{Mo}^{\text{VII}}\text{V}_8^{\text{V}}\text{O}_{40}]^{-}\) is structurally based on the \(\alpha\)-Keggin \([(\text{PO}_4)\text{Mo}^{\text{VII}}\text{V}_8^{\text{V}}\text{O}_{36}]\) (FIG. 1 b) archetype containing four additional five-coordinated terminal \(\text{V}^{\text{VII}}\text{O}^{\text{VI}}\) units. One distorted and disordered \(\text{XO}_4^{2-}\) \((\text{X} = \text{P, V, As})\) tetrahedron lies inside the host cavity. The Mo ions are all six-coordinated resulting in an octahedral geometry. Each vanadium ion possesses a distorted \(\{\text{VO}_3\}\) square pyramidal geometry with eight vanadium ions forming the central belt by sharing edges of \(\{\text{VO}_3\}\) square pyramids. There are two \(\{\text{MoO}_{18}\}\) rings by common edges above and below the \(\text{V}_8\) belt. The assignments of the oxidation state for the molybdenum and vanadium ions are consistent with their coordination geometry and confirmed by bond valence sum calculations. In most of the cases the transition metal (\(\text{Co}^{\text{II}}, \text{Ni}^{\text{II}}\) or \(\text{Cu}^{\text{II}}\)) complexes do covalently link to the anion via terminal capping \(\text{V}^{\text{VII}}=\text{O}\) groups (FIG. 3 d).

An Ab Initio and DFT study of \([\text{PMo}^{\text{VII}}\text{Mo}^{\text{VII}}\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{40}(\text{VIVO})_4]^{5-}\) shows that six of ten accepted electrons are delocalized over the \(\text{V}_8\)-ring, whereas the remaining electrons are delocalized over the Mo centers. 166 As with bi-capped anions, variable-temperature magnetic susceptibility measurements were performed and show the presence of antiferromagnetic interactions between the reduced Mo(V) and V(IV) atoms. 157-160

Wells-Dawson-type polyoxometalates

So far eight reduced POMos, two reduced POTs and three mixed-metal (Mo/W and V/Mo) POMs of Wells-Dawson structure, which accept between one and up to five electrons, were crystallized and investigated by single-crystal XRD so far (Table S5).

Polyoxomolybdates exhibiting the Wells-Dawson structure. The one- and two electron reduction of \(\alpha-[\text{P}_2\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{18}]^{6-}\) in acetonitrile leads to \(\alpha-[\text{P}_2\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{17}\text{O}_{62}]^{7-}\) and \(\alpha-[\text{P}_2\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{17}\text{O}_{62}]^{8-}\), which were confirmed by EPR and \(^{31}\text{P}\) NMR studies. 167 The magnitudes of the EPR \(g\) values suggest that the odd electron is either delocalized or is rapidly hopping between a mirror-plane-related pair of equatorial Mo atoms. 167 Electrolytic reduction of \([\text{P}_2\text{O}_5\text{Mo}^{\text{VI}}\text{O}_{18}\text{O}_{45}]^{6-}\) at 0.11 V in acetonitrile solution yielded the green one-electron reduced species \([\text{P}_2\text{O}_5\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{17}\text{O}_{54}]^{5-}\) and the blue two-electron-reduced species \([\text{P}_2\text{O}_5\text{Mo}^{\text{VI}}\text{Mo}^{\text{VI}}\text{O}_{16}\text{O}_{54}]^{4-}\), of which formation was confirmed by \(^{31}\text{P}\) NMR and EPR studies. 168 Four compounds contain two or three electron reduced Wells-Dawson anions \(\{\text{As}_2\text{Mo}_{18}\text{O}_{62}\}\), which are capped by a certain number of \(\text{Cu}^{\text{II}}\) or \(\text{As}^{\text{III}}\) species on different coordination positions. These compounds were hydrothermally synthesized by altering of the pH and the organic ligand within the reaction system. 169
Reduction by two or more electrons produces highly basic forms that have been isolated as protonated polyoxometalate salts. The dependence of the EPR line width on temperature for \([\text{Bu}_4\text{N}]_4[\text{H}_3\text{S}_2\text{Mo}^\text{VI}_{18}\text{O}_{54}]^2\) is consistent with the intermolecular thermal delocalization of the odd electron over the entire molecular framework in the temperature range from 77 to 253 K. By reaction of \([\text{Bu}_4\text{N}]_4[\text{H}_3\text{S}_2\text{Mo}^\text{VI}_{18}\text{O}_{54}]^2\) with triphenylphosphine in acetonitrile the four-electron reduced \(\alpha\)-Wells-Dawson compound \([\text{Bu}_4\text{N}]_4[\text{H}_3\text{S}_2\text{Mo}^\text{VI}_{18}\text{O}_{54}]^2\)-MeCN was prepared. The most significant structural alterations, compared to the parent structure, are an increase in the Mo–Mo distances between corner-sharing MoO6 units in the equatorial belt by 0.066 Å and a decrease in the Mo–O–Mo bond length connecting the two halves of the anion. \(\alpha\)-[(SO3)2Mo^V2Mo^VI_{18}O_{54}]6–, which incorporates the pyramidal sulfate anion, was synthesized in the presence of an excess of triethanolamine (TEA) at pH 4.0 with Na2S2O4 not only acting as reducing agent but also as the source for the incorporated of SO3 2–. The electrochemistry of these two-electron rich anion has been investigated in aqueous media using cyclic and rotated disk voltammetry at glassy carbon electrodes and bulk electrolysis with a focus on the pH-dependence for the oxidation to \(\alpha\)-[Mo^VI_{18}O_{54}(SO3)2]4+ In buffered media at pH ≥ 4, the cyclic voltammetric response for \(\alpha\)-[(SO3)2Mo^V2Mo^VI_{18}O_{54}]6– reveals two partially resolved one-electron oxidation processes corresponding to the sequential generation of \(\alpha\)-[(SO3)2Mo^V2Mo^VI_{18}O_{54}]5– and \(\alpha\)-[(SO3)2Mo^VI_{18}O_{54}]4–. \(\alpha\)-[(SO3)2Mo^V2Mo^VI_{18}O_{54}]6– was obtained during simple one-pot reaction because \(\alpha\)-[Mo^VI_{18}O_{54}(SO3)2]4+ is slightly easier to reduce than the \(\beta\)-form. Furthermore, on a much longer bulk electrolysis timescale, \(\beta\)-\(\rightarrow\)\(\alpha\) isomerisation occurs showing that the reduced forms of the \(\alpha\)-isomer are thermodynamically favoured over the \(\beta\) forms, which was shown by Cronin and co-workers. In aprotic acetonitrile \(\beta\)-[Mo^VI_{18}O_{54}(SO3)2]6– is retained on the voltammetric timescale upon one- and two-electron reduction. \(\alpha\)-[(SO3)2Mo^VI_{18}O_{54}]4– undergoes reduction slightly easier than the \(\beta\) form.

Box 2 | Wells-Dawson structure

In 1892, Kehrmann described the synthesis of a Wells–Dawson-type phosphotungstate for the first time. However, Dawson published the first crystallographic study of this structure 60 years later. The general formula of the Wells–Dawson anion is \([\text{XO}_4]_2\text{M}_{18}\text{O}_{54}]^{2–}\); M = Mo, W and X = main-group element. The classical Wells-Dawson structure incorporates two tetrahedral anions such as PO4 3–, AsO4 3–, SO4 2–, or ClO4 –. There are only a few examples of \(\{\text{M}_{18}\}\) Wells-Dawson-like clusters that host non-tetrahedral anions, for example, a single pyramidal anion BiO3 3–, AsO4 3–, or SO4 2– in each \(\{\text{M}_{18}\}\) unit, presumably due to size restrictions. A ditetrahedral anion – P2O7 4– (two tetrahedral sharing one corner) was also observed in the centre of the structure. The structure, known as \(\alpha\)-Wells-Dawson isomer, possesses two identical “half units” of the central atom surrounded by nine octahedral units XM9O31 linked through oxygen atoms. The isomeric \(\beta\)-Wells-Dawson structure originates from the rotation of one half unit by \(\pi/3\) around the axis connecting both heteroatoms. Similarly to many heteropolyanions, the Wells–Dawson structure can be chemically manipulated to generate lacunary units by removing up to six Mo6 octahedra, which gives \(\chi_2\text{M}_{12}\) anion. The redox properties of Wells-Dawson
Polyoxometalates in aqueous media have received limited attention because of their low solubility and their instability under basic conditions.266-268

Polyoxotungstates exhibiting the Wells-Dawson structure. $\alpha-[(\text{SO}_3)^2\text{W}^{VI}_1\text{O}_{54}]^{5-}$ was obtained as Pr_4N^+ (Pr = propyl) salt by reducing the so-called “Trojan Horse” $[(\text{SO}_3)^2\text{W}^{VI}_{18}\text{O}_{56}(\text{H}_2\text{O})_2]^{8-}$ cluster176 via a template orientation transformation. Cyclic voltammetry of $\alpha-[(\text{SO}_3)^2\text{W}^{VI}_{18}\text{O}_{54}]^{6-}$ and $\alpha-[(\text{SO}_3)^2\text{W}^{VI}_1\text{O}_{54}]^{5-}$ in CH$_3$CN produces evidence for an extensive series of reversible one-electron redox processes that are associated with the tungsten-oxo framework of the POT cluster.177 The encapsulated sulfite anions in the “Trojan Horse” $[\text{W}^{VI}_{18}\text{O}_{56}(\text{SO}_3)^2(\text{H}_2\text{O})_2]^{8-}$ cluster176 act as embedded reducing agents and are oxidized to sulfate when heated to over 400 °C according to the following reaction scheme: $[(\text{SVI}^{IV}\text{O}_3)^2\text{W}^{VI}_{18}\text{O}_{56}(\text{H}_2\text{O})_2]^{8-} \rightarrow [(\text{SVI}^{IV}\text{O}_4)^2\text{W}^{IV}_4\text{W}^{VI}_{14}\text{O}_{54}(\text{H}_2\text{O})_2]^{8-} + 2\text{H}_2\text{O}$.

The only example of a Wells-Dawson-type anion with ClO$_4^{2-}$ as heteroatom was observed in $[\text{nBu}_4\text{N}]_3[\text{Cl}_2\text{W}^{VI}_1\text{O}_{62}]$, which was obtained under UV irradiation from monomeric WO$_4^{2-}$.178 The powder EPR spectrum of reduced tungstoperchlorate indicates the presence of WV and suggests that the unpaired electron may be delocalized over the W atoms in the anion network due to thermally activated electron hopping.

The potential photocatalyst for oxidative decomposition of methylene blue dye contains $[\text{As}_2\text{W}^{IV}_1\text{W}^{VI}_{16}\text{O}_{62}]^{8-}$, which is connected to eight copper ions and synthesized under hydrothermal conditions.179

Addenda priority for electron acceptance in mixed-metal Wells-Dawson polyoxometalates. Baker and co-workers investigated mixed Mo/W electron-rich anions and the derivatives of parent $[\text{P}_2\text{Mo}_n\text{W}_{18-n}\text{O}_{62}]^{6r}$ ($n = 1 - 6$) in aqueous solution using ^{31}P and ^{183}W NMR as well as EPR in the 1980s.180-183 In 1983, Pope reported the synthesis of Wells-Dawson lacunary polyoxotungstates and vanadyl sulfate one-electron reduced anions $[\text{P}_2\text{V}^{IV}_n\text{V}^{IV}_m\text{W}_{18-n}\text{O}_{62}]^{(6n+1)-}$ ($n = 1, 2$).185 The electrochemistry of mono-substituted VIV Wells-Dawson anions $\text{V}(X_n\text{V}^{IV}\text{Mo}_n\text{W}_{17-n}\text{O}_{62})$ ($X = \text{P}, \text{As}; k = 1, 2, 187-189; n = 0, 187-188, 2$) were investigated by Nadjo et al. These anions are efficient as electrocatalysts for the reduction of NO$_2^-$, oxidation of L-cysteine and...
as stabilizing agents for the preparation of Pd0 nanoparticles.187-189 However, so far no single crystal structure of this kind of Wells-Dawson anion is reported.

Cronin and co-workers recently reported a new structural type that is related to the Wells-Dawson archetype in terms of the cage geometry but with seven of the metal centres having been changed to hetero-metals like in the case of (NH\textsubscript{4})\textsubscript{7}[(SO\textsubscript{3})MoVI\textsubscript{11}]18VVII\textsubscript{2}O\textsubscript{52}\cdot12H\textsubscript{2}O, where 7 Mo atoms were changed to VIV\textsubscript{7} by sulphite, which also acts as a heteroanion. The distorted egg-shaped capsule of the molybdovanadate-sulfite anion is built up of two different hemispheres. In the upper hemisphere, three edge-sharing MoO\textsubscript{6} octahedra form the cap, which is connected to the belt via vertexes of alternating VVO\textsubscript{4} tetrahedra and MoO\textsubscript{6} octahedra. The \{M\textsubscript{3}\} belt at the bottom hemisphere is made of three sets of edge-sharing MoO\textsubscript{6}/VO\textsubscript{4} octahedra interconnected within the framework to give three Mo–O–V moieties arranged in a ring-like structure. Finally, the \{M\textsubscript{3}\} cap at the bottom of the cluster contains two Mo and one V position, respectively (BOX 2).

Reduced Basket-like polyoxomolybdates. As a unique class of unclassical POM, the basket-like archetype \{M⊂P\textsubscript{4}MoVII\textsubscript{18}O\textsubscript{73}\} (M = alkali metal, \subset - covalently incorporated) represents mixed valence molybdates, which are obtained by two or more electron reductions from the corresponding MoVI of orthomolybdate Mo\textsubscript{O}\textsubscript{4}2–191-196 or heptamolybdate Mo\textsubscript{7}O\textsubscript{24}6–197-201 (BOX 2). So far 31 reduced Basket-like polyoxoanions, which accept between two and six electrons, were crystallized and investigated by single-crystal XRD up to date (TABLE S6).

All basket-like POMos were obtained by hydrothermal synthesis using potassium191,192 or alkaline earth metals193-201 (Ca, Sr, Ba) as template agents to stabilize and induce polyanions formation. The organic ligands play an important role as reducing agents to reduce the MoVI to MoV centers in one pot reactions including \{Mo\} (MoO\textsubscript{3}/Mo, Na\textsubscript{2}MoO\textsubscript{4} or (NH\textsubscript{4})\textsubscript{6}Mo\textsubscript{7}O\textsubscript{24}), H\textsubscript{3}PO\textsubscript{4}, MCl\textsubscript{2} (M = Ca, Sr, Ba) or KH\textsubscript{2}PO\textsubscript{4} and H\textsubscript{2}O leading to different dimensions or packing arrangements in the final hybrid materials.196,198-201

The basket-like polyoxoanion consists of two parts: the “handle” \{P\textsubscript{4}Mo\textsubscript{4}\} unit and the “basket body” \{P\textsubscript{2}Mo\textsubscript{14}\} segment (BOX 2). The lower \{P\textsubscript{2}Mo\textsubscript{14}O\textsubscript{46}\} part is a tetravacant lacunary derivative of the Wells–Dawson anion \(\{\text{P}_{2}\text{Mo}_{18}\text{O}_{62}\}^{5–}\) formed by removal of four “belt” Mo octahedra, in which each of the fourteen Mo atoms has only one terminal, double-bonded oxygen atom and thus meets the criteria for receiving “blue” electrons.14 The upper part \(\{\text{P}_{2}\text{Mo}_{27}\}\) is the handle of the basket formed by four MoO\textsubscript{6} octahedra and four PO\textsubscript{4} tetrahedra, in which each of the four Mo atoms has two terminal, double-bonded oxygen atoms. The \(\{\text{P}_{4}\text{Mo}_{4}\}\) and the “basket body” \(\{\text{P}_{2}\text{Mo}_{14}\}\) moieties are connected together through edge- and corner-sharing modes. The entire basket-shaped cluster possesses C\textsubscript{2v} symmetry. The Mo–O bonds between \(\{\text{P}_{4}\text{Mo}_{4}\}\) and \(\{\text{P}_{2}\text{Mo}_{14}\}\) have longer distances and smaller bond orders in comparison to classical Wells-Dawson anion. As a result, the negative void formed by nine oxygen atoms of the two parts is large and can accommodate either alkali or alkaline earth metals.

Another example of Wells-Dawson derivative encapsulating alkali metal \(\{\text{Na(SO}_{3})\textsubscript{2}(\text{PhPO}_{3})\textsubscript{3}\text{Mo}_{\text{V}}\text{Mo}_{\text{VI}}\text{O}_{49}\}^{5–}\) was synthesized from Na\textsubscript{2}MoO\textsubscript{4}, Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4} and phenylphosphonic acid.202 Electrochemical investigations of \(\{\text{Na(SO}_{3})\textsubscript{2}(\text{PhPO}_{3})\textsubscript{3}\text{Mo}_{\text{V}}\text{Mo}_{\text{VI}}\text{O}_{49}\}^{5–}\) showed three redox couples, in which the electrons were mainly delocalized over eight Mo sites.203

The compositions of carbon paste electrodes (CPE) with basket-like POMs have been checked for electrocatalytic activity on reduction of nitrite NO\textsubscript{2}–, hydrogen peroxide H\textsubscript{2}O\textsubscript{2} and oxidation of dopamine. In the series of experiments with
[Sr ⊂ $P^V_{3}Mo^{V/VI}_{18}O_{73}$]$^{n−}$ it has been noted that catalytic activities were enhanced with increasing extent of the anion reduction.194,199 The basket-like POMos demonstrated superiority over other POM archetypes as catalysts in photodegradation reaction due to their special structure, which makes electrons and holes migrate rapidly to the surface of the basket cage, thus improving the photocatalytic activities significantly.200

Five-electron reduced Wells-Dawson-like borophosphate polyoxomolybdates. In 2002, Sevov and co-wokers reported synthesis and structure of a new type of reduced borophosphate POMos. (TABLE S6).204 The polyanion $[B_{2}P_{8}Mo_{12}O_{59}(OH)_{3}]^{8−}$ is structurally very closely related to that of the $α$-Wells-Dawson anion $[P_{2}Mo_{18}O_{62}]^{6−}$ and consist of two crystallographically equivalent hemispheres of $[BP_{4}Mo_{6}O_{31}H_{1.5}]^{−}$ that are linked together by six shared oxygen atoms (BOX 2).

There are two phosphate groups inside the cluster, which are situated near the centres of the molybdenum belts. The other six phosphate groups are part of the POM cage (addenda) sharing two vertexes with two edge-sharing molybdenum octahedra and one vertex with a borate tetrahedra. The two borate groups of the anion (one in each hemisphere) share all corners with three outer and one inner phosphate groups. The magnetic measurements indicate only one unpaired electron, so the five electrons from these atoms are delocalized over the cluster and four of them are paired. The substitution of the six terminal oxygen and hydroxyl groups of the outer phosphates in $[B_{2}P_{8}Mo_{12}O_{59}(OH)_{3}]^{8−}$ with phenyl groups leads to $[(BPO_{4})_{2}(O_{3}P-Ph)_{6}Mo^{V}Mo^{VI}_{7}O_{30}]^{5−}$ formation.205

Anderson-like polyoxometalates

While classical Anderson-type structure for POMos and POTs cannot be reduced as they contain type II POMs, one-pot solvothermal reaction with organic ligands and reducing agent leads to formation of fully reduced Anderson-like functionalized POVs and POMos. In these anions V or Mo ions form double bonds only with one terminal oxygen and thus have free orbital to accept extra electron (FIG. 1 d). Up to now fourteen reduced Anderson-like POVs 206-212 and seventeen POMos 213-229, which accept six electrons, were crystallized and investigated by single-crystal XRD so far (TABLE S7).

In 1987 Huang et al. reported the first synthesis of hexanuclear oxovanadium (IV) anion $[(V^{IV}O)_{6}(CO_{3})_{4}(OH)_{9}]^{5−}$ from VOCI$_{2}$ and NH$_{4}$HCO$_{3}$ under CO$_{2}$ atmosphere.211 The $[(V^{IV}O)_{6}(CO_{3})_{4}(OH)_{9}]^{5−}$ is consolidated by bridging hydroxo and carbonato groups, one of which is situated in the centre of the anion. Khan et al. synthesized a series of POVs polyoxocations $[MV^{IV}O_{6}(OCH_{2}CH_{2})_{2}N(CH_{2}CH_{2}OH)]^{+}$ (M = Li, Na, Mg, Mn, Fe, Co, Ni).206 The cyclic fragment $\{MV_{6}N_{6}O_{18}\}$ adopts the Anderson-type structure:210 by exhibiting a ring of six VO$_{5}$N octahedral linked to a central MO$_{6}$ (M = Li, Na, Mg, Mn, Co, Ni) unit (FIG. 1 d).

Four Anderson-like alkoxo-POVs anions $[V^{IV}O_{6}(OCH_{3})_{9}[µ_{6}-SO_{4}](COO)]^{2−}$ can serve as 3-connected second building units that assemble with dicarboxylate or tricarboxylate ligands to form a new family of metal organic tetrahedron $\{[V_{6}O_{6}(OCH_{3})_{9}(SO_{4})]_{4}(L)_{6}]^{8−}$ (L = BDC, BDC-NH$_{2}$, BDC-Br).210 The similar behaviour demonstrated vanadium(V)-centered anion $[V^{IV}O_{6}(OCH_{3})_{9}(V^{IV}O)(H_{2}O)(COO)]^{3−}$, adopting discrete truncated tetrahedral cage geometry.209

The synthesis of new families of functionalized POMos with cyclic cores of MoV and localized Mo–Mo bonds was initiated by Haushalter and Lai 212-217 and developed by several groups. The fully-oxidized class with the general formula $\{X_{4}Mo^{V}_{6}E_{6}\}$ (FIG. 1 d) can accommodate various central and peripheral X groups such as $\{PO_{4}\}$, $\{C_{6}H_{5}PO_{3}\}$, $\{C_{6}H_{5}AsO_{3}\}$ and $\{CO_{3}\}$. The system was later extended to the oxothio chemistry by the synthesis of anions such as $[X_{4}Mo_{6}S_{6}O_{6}(OH)_{3}]^{5−}$ ($X = HPO_{4}$, HAsO$_{4}$)220,221 where six sulfur atoms were inserted in the bridging positions of the dimolybdenum pairs.
The hydroxyphosphate anions \([\text{Mo}^V_{6}\text{P}_4\text{X}_3]\)^{n−} (X = O, OH) tend to form dimers through joined metal ions (Na\(^{2+}\), Mn\(^{II}\), Co\(^{II}\), Ni\(^{II}\), Fe\(^{III}\), Cd\(^{II}\))\(^{214,218,222}\). The Mo\(^V\) centers of the \([\text{Mo}^V_{6}\text{O}_{24}]\) core exhibit strongly interacting pairs leading to an alternating pattern of short and long Mo⋯Mo contacts, characterized by distances of 2.58 and 3.58 Å\(^{218}\). These anions exhibit reversible redox behavior and are active catalysts for the reduction of Fe\(^{III}\) in solution\(^{226}\), nitrite, hydrogen peroxide and ascorbic acid\(^{224}\) and for the oxidation of acetaldehyde with H\(_2\)O\(_2\)\(^{223}\).

The hydrothermal synthesis of the molybdenum transition metal phosphate system can not only lead to the formation of the \([\text{P}_4\text{Mo}^V_{6}]\) family but also to wheel-like structures \([\text{Mo}^V_{16}\text{M}_x\text{P}_{26}] (x = 16 − \text{M} = \text{Co}^{II}, \text{Ni}^{II}; x = 14 − \text{M} = \text{Ni}^{II})\) with a diameter of ~ 19 Å, which contain \([\text{Mo}_4]\) tetramers linked by transition metal trimers and tetramers. Co\(^{II}\) and Ni\(^{II}\) centres show strong M\(^{II}\)⋯M\(^{II}\) antiferromagnetic interactions (for Ni\(^{II}\) g = 2.25 and J = −24.3 cm\(^{-1}\)).\(^{228}\)

Vanadates of the \([\text{V}_{18}\text{O}_{42}]\) archetypes

The mixed-valence vanadium isopolyanions form a structurally unusually versatile cluster family due to the variation in the amount of V\(^{IV}\) and V\(^{V}\) and the coordination geometries of the V centers (tetrahedral V\(^{V}\), tetragonal-pyramidal V\(^{IV}/V^{V}\), and octahedral V\(^{IV}/V^{V}\)). The formation of supramolecular host–guest complexes with interesting topologies is possible by linking of O\(_2\)V=O square pyramids sharing corners and edges via their basal oxo groups, which was demonstrated by the structures of \([\text{V}_{18}\text{O}_{42}]\) and \([\text{V}^{IV}_{15}\text{O}_{36}]\) (FIG. 1 d).\(^{231-234}\) These compounds demonstrate a very strong antiferromagnetic coupling via the µ-oxo groups, while their frontier orbitals strongly interact with the single-occupied molecular orbitals of the involved vanadyl groups (S = 1/2) and thus act as very efficient superexchange ligands.\(^{235}\) However, excited multiplet magnetic states can only be populated significantly at very high temperatures at which the related compounds might already decompose, thus inhibiting their experimental characterization. To partially overcome this obstacle the introduction of non-magnetic spacer groups connected to the POV can be applied. Since the discovery of the arsenato-polyoxovanadate compound K\(_6[\text{As}_6\text{V}^{IV}_{15}\text{O}_{42}(\text{H}_2\text{O})]\)·8\(_2\)O\(^{236}\) a great number of As, Sb, Si and Ge derivatives of the isopolyoxovanadate \([\text{V}_{18}\text{O}_{42}]\) archetype were reported.\(^{237-246}\)

In this review we provide a brief overall picture of this type of POVs. The structural aspects, key properties and synthetic routes of Si-POVs, Ge-POVs, As-POVs and Sb-POVs, of which central structural motifs are typically derived from the \([\text{V}_{18}\text{O}_{42}]\) archetype, were reviewed recently.\(^{247}\)

A typical example for host systems for small guests are polyvanadate cluster anions with an approximately spherical \([\text{V}_{18}\text{O}_{42}]\) shell, which can be synthesized under relatively mild conditions applying an inert atmosphere.\(^{232,234}\) Interestingly, the \([\text{V}_{18}\text{O}_{42}]\) shell can exist as two different structural types: either with a distorted rhombicuboctahedron or a so-called pseudorhombicuboctahedron (the “14th Archimedean body”) geometry (FIG. 1 d). The first type has T\(_d\) symmetry and can be regarded as an enlarged Keggin ion, in which all square planes of the rhombicuboctahedron are spanned by the 24 innershell µ\(_3\)-oxygen atoms, which in turn are capped by \{VO\} units. The second type has an idealized D\(_{4h}\) symmetry.\(^{234}\)

The spherical \([\text{V}_{18}\text{O}_{42}]\) shell principally represents a kind of container that can incorporate different species below a critical sizes such as H\(_2\)O, halides, formate or nitrite. The type of encapsulation can depend on the pH value: in a highly basic medium (pH 14) only a H\(_2\)O molecule is enclosed, whereas at lower pH values anionic species are preferentially encapsulated.\(^{232,234,248,249}\)
There are three types of $\{X_{6}V_{15}O_{42}\}$ structures with x being 2, 3 or 4. The first described $[\text{As}^{\text{III}}_{6}\text{V}^{\text{IV}}_{15}\text{O}_{42}(\text{H}_{2}\text{O})]^{6-}$ anion236 as well as other $\{X_{6}V_{15}\} (X = \text{Sb},\text{Ge},\text{Si})$ derivatives have crystallographic D_3 symmetry and consist of 15 distorted tetragonal VO$_5$ pyramids and 6 trigonal XO$_3$ pyramids (FIG. 1d). The 15 VO$_5$ pyramids are linked via vertices and edges to each other and are connected to the XO$_3$ groups solely through vertices. Two neighboring XO$_3$ groups are joined via an oxygen bridge forming a handle-like X$_2$O$_5$ moiety. The structure of the clusters can be regarded as consisting of three different layers: {six corner- and edge-sharing VO$_5$ square pyramids} \rightarrow $\{V_3X_6O_{28}\} \rightarrow$ {six corner- and edge-sharing VO$_5$ square pyramids}. The structures of $\{X_{4}V_{16}\}$ and $\{X_{8}V_{14}\}$ ($X = \text{As}, \text{Sb}, \text{Ge}, \text{Si}$) are built on the same principal as $\{V_{15}X_6\}$, that is, by replacing two diagonal VO$_5$ square pyramids with two X$_2$O$_5$ groups.

The geometrically frustrated structure of $\{\text{As}^{\text{III}}_{6}\text{V}^{\text{IV}}_{15}\}$ exhibits highly interesting magnetic and redox properties. The $\{\text{As}^{\text{III}}_{6}\text{V}^{\text{IV}}_{15}\}$ cluster with an ~ 1.3nm diameter exhibits a structure with layers of different magnetizations: a large central V$_3$ triangle is sandwiched by two smaller V$_6$ hexagons (FIG. 1d). The 15 spins ($S = 1/2$) are coupled by antiferromagnetic super-exchange and Dzyaloshinsky–Moriya interactions via different pathways, which results in a collective low spin ground state with $S = 1/2$.36 Studies of the adiabatic magnetization and quantum dynamics show that the $\{\text{As}^{\text{III}}_{6}\text{V}^{\text{IV}}_{15}\}$ cluster can act as a qubit with relatively long coherence lifetimes and exhibits phonon bottleneck-induced magnetization hysteresis.36, 235, 250, 251

Conclusions and outlook

The majority of studies in the area of electron-rich POMs has hitherto been focused on bulk synthesis and characterisation, however, great progress has been made recently in investigating their potentials as catalysts (see e.g. ref 27,31-34) and magnetic materials (see e.g. ref 35, 36). Significant challenges exist for the experimental chemist to understand the electrochemistry of POMs and thus the synthesis of POMs with defined numbers of “blue” electrons. The development of new computational methodologies to investigate and understand the mechanisms of POM reduction is gaining momentum.132, 166, 252 There is considerable interest in the integration of electron-rich POMs into biological systems as they were shown to exhibit enhanced biological activity in comparison to their oxidized parent structures. For example, tuning of the redox state of Keggin mixed-metal Mo/V POMs is a dominating factor in the functionality of chemical and biological self-detoxifying materials.253 Gaining real-time information about the properties of the different redox states (e.g., their optical properties via spectro-electrochemical methods) is of high interest.

Despite a number of crucial challenges at both the fundamental and applied levels, the structural characteristics of reduced POMs are highly advantageous and an enormous future potential exists to revolutionize a number of research fields such as electro- and photocatalysis, magnetochemistry, nanochemistry and biology, amongst others.

Acknowledgements

The research was funded by the Austrian Science Fund (FWF): M2203 and P27534. The authors wish to thank Dr. Lukas Krivosudský and Emir Al-Sayed, MSc for valuable discussions concerning this work and Dr. Aleksandar Bijelic for critical proofreading of the manuscript.

References

1 Pope, M.T. in *Heteropoly and Isopoly Oxometalates* (Springer-Verlag, Berlin, 1983).

Aparicio, P. A., Poblet, J. M. & Lõpez, X. Tungsten redox waves in \([\text{XMW}_{11}\text{O}_{40}]^{m}\) (X = P, Si, Al and M = W, Mo, V, Nb, Ti)

55 Khan, M. I. *et al.* Cation Inclusion within the mixed-valence polyanion cluster [(Mo	extsubscript{6}V	extsubscript{3}O	extsubscript{24})	extsubscript{3}Mo	extsubscript{6}V	extsubscript{12}O	extsubscript{28}(OH)	extsubscript{12}]	extsuperscript{8−}: syntheses and structures of (NH	extsubscript{4})	extsubscript{2}[NaMo	extsubscript{16}(OH)	extsubscript{12}O	extsubscript{40}].H	extsubscript{2}O and (Me	extsubscript{2}NH	extsubscript{2})	extsubscript{6}[H	extsubscript{2}Mo	extsubscript{16}(OH)	extsubscript{12}O	extsubscript{40}]. *Angew. Chemie Int. Ed.* **32**, 1780–1782 (1993).

Khan, M. I. *et al.* Hydrothermal synthesis and characterization of hexavanadium polyoxo alkoxide anion clusters - crystal-structures of the vanadium(IV) species Ba\([V_6O_7(OH)_6((OCH_2)_2CCH_2OH)_2]\)·3H_2O and Na_2\([V_6O_7(OH)_6((OCH_2)_2CCH_2)OH)\]·2H_2O, of the mixed-valence complex \(\text{Me}_2\text{NH}[V^{V}_5V^{IV}_2O_7(OH)_2((OCH_2)_2CCH_2)OH]_2\) and of the fluoro derivative Na\([V_6O_6F(OH)_3((OCH_2)_2CCH_2OH)]_2\]·3H_2O. *Inorg. Chem.* **32**, 2929–2937 (1993).

Och, R., Khan, M. I., Chen, Q., Goshom, D. P. & Zubieta, J. Polyoxo Alkoxide clusters of vanadium: structural characterization of the decavanadate core in the "fully reduced" vanadium(IV) species \([V_{10}O_{16}((OCH_2)CH_2C(CH_2O)3)_4]\) and \([V_{10}O_{14}((OCH_2)CH_2C(CH_2O)3)_5]\). *J. Am. Chem. Soc.* **114**, 3341–3346 (1992).

91 Qin, C. & Zubieta, J. Structural investigations of the hexavanadium core \(\{V_6O_{19}\}\) in ‘oxidized’, mixed valence and ‘reduced’ clusters of the type \(\left[V^{m+n}_{6-n}V^{n}_{6-n}\right]_{\text{O}_{13-n}}(\text{OH})_n(\text{OCH}_2\text{CH}_3\text{CR})_2\right]^{2-}\), \(n = 0, 3, \) and 6. *Inorganica Chimica Acta* **198–200**, 95–110 (1992).
95 Hayashi, Y., Miyakoshi, N., Shinguchi, T. & Uehara, A. A Stepwise Growth of Polyoxovanadate by Reductive Coupling Reaction with Organometallic Palladium Complex: Formation of \(\{(\eta^3-C_4H_7)\text{Pd}\}_2V_4O_{12}\)^{2–}, \(V_{10}O_{26}\)^{4–} and \(V_{15}O_{36}(\text{Cl})\)^{4–}. *Chem. Lett.* **36**, 170–171 (2001).
96 Kurata, T., Uehara, A., Hayashi, Y. & Isobe, K. Cyclic Polyvanadates incorporating template transition metal cationic species: synthesis and structures of hexavanadate \(\text{[PdV}_6\text{O}_{18}]^{n+}\), octavanadate \(\text{[Cu}_2\text{V}_8\text{O}_{24}]^{n+}\), and decavanadate \(\text{[Ni}_5\text{V}_9\text{O}_{30}(\text{OH})_2(\text{H}_2\text{O})_6]^{n+}\). *Inorg. Chem.* **44**, 2524–2530 (2005).
107 Chen, W. & Mi, J. A new redox-based approach for synthesizing a mixed-valence hybrid polymolybdate uncommonly...

109 Yu, H.-H. *et al.* Hydrothermal synthesis and structural characterization of the first mixed molybdenum-tungsten capped-keggin polyoxometal complex: \([\text{Co(dien)}]_4[\text{AsVO}_4\text{Mo}_8\text{W}_4\text{O}_{32}(\mu_2-\text{OH})_3]\cdot2\text{H}_2\text{O}.* *Dalton Trans.* **33**, 195–197 (2008).

123 Wang, J., Shen, Y. & Niu, J. Hydrothermal synthesis and crystal structure of a novel compound supported by \(\alpha\)-Keggin units \([\text{Cu}(2,2\text{'-bipy})_2][\text{W}_4\text{O}_{10}(\text{Cu}(2,2\text{'-bipy})_2)_2]\cdot\text{H}_2\text{O}.** *J. Coord. Chem.* **59**, 1007–1014 (2006).

152 Dolbecq, A., Cadot, E., Eisner, D. & Secheresse, F. Hydrothermal syntheses: A route to the stepwise condensation of reduced Keggin polyanions. From reduced beta-[H$_n$SiMo$_{12}$O$_{40}$]$^{n-}$ monomers to bicapped dimerized [Si$_2$Mo$_{28}$O$_{84}$(H$_2$O)$_6$$]^{6-}$ anions. *Inorg. Chem.*** **38**, 4217–4223 (1999).

154 Mei, H., Yan, D., Chen, Q., Xu, Y. & Sun, Q. Hydrothermal synthesis, structure characterization and catalytic property of a new 1-D chain built on bi-capped Keggin type mix-valence molybdenum compound: $(\text{NH}_4)_4[\text{Mo}^{VI}_9\text{Mo}^{V}_6\text{O}_{36}(\text{As}^{V}_2\text{O}_3)\text{Mo}^{V}_{7}\text{(MoO}_4)]$. *Inorganica Chim. Acta* **363**, 2265–2268 (2010).

155 Zhang, Q. B. *et al.* Synthesis and characterization of the first polyoxometalate possessing bicapped by antimony alpha-Keggin structure $(\text{C}_2\text{H}_5\text{NH})_2[(\text{PMo}^{VI}_7\text{Mo}^{V}_8\text{Sb}^{III}_2\text{O}_{46})\cdot 2\text{H}_2\text{O}]$. *Inorg. Chem. Commun.* **9**, 544–547 (2006).

157 Liu, Y. B. *et al.* Hydrothermal synthesis and characterization of three one-dimensional chain materials formed by reduced...

172 Neier, R., Trojanowski, C. & Mattes, R. Reduced polyoxomolybdates with the Keggin and Dawson structures - preparation and crystal-structures of 2-electron reduced [K(18-crown-6)]$_2$[N(Ph$_3$)$_2$]$^+$$^{[HPMo$_{12}$O$_{40}$]·8MeCN}$18-crown-6 and 4-electron reduced [NBU$_3$]$_2$[H$_2$S$_2$Mo$_{18}$O$_{62}$]·4MeCN (1 8-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane). J. Chem. Soc. Trans. 2521–2528 (1995).

173 Long, D. L., Kögerler, P. & Cronin, L. Old clusters with new tricks: Engineering S···S interactions and novel physical...

177 Fay, N. et al. Structural, electrochemical, and spectroscopic characterization of a redox pair of sulfite-based polyoxotungstates: α-[W$_{18}$O$_{54}$(SO$_3$)$_2$]$^{4+}$ and α-[W$_{18}$O$_{54}$(SO$_3$)$_2$]$^{5+}$. Inorg. Chem. 46, 3502–10 (2007).

Khan, M. I., Tabussum, S., Doedens, R. J., Golub, V. O. & O’Connor, C. J. Functionalized metal oxide clusters: synthesis, characterization, crystal structures, and magnetic properties of a novel series of fully reduced heteropolyoxovanadium cationic clusters decorated with organic ligands – \(\{\text{MV}^{V}_{2}\text{O}_{6}\text{[(OCH}_{2}\text{CH}_{2}]_{2}\text{N(CH}_{2}\text{CH}_{2}OH)}\}_{3}\}X \) (M = Li, X = Cl-LiCl; M = Na, X = Cl-H₂O; M = Mg, X = 2Br-H₂O; M = Mn, Fe, X = 2Cl; M = Co, Ni, X = 2Cl-H₂O) *Inorg. Chem.*, **43**, 5850–5859 (2004).

Khan, M. I. et al. Organo-functionalized metal-oxide clusters: synthesis and characterization of the reduced cationic

35

211 Mak, W. & Huangb, K. A Hexanuclear oxovanadium(IV) anionic aggregate containing µ₂- and µ₆-carbonato groups: synthesis and structural characterization of \((\text{NH}_4)_3\{(\text{VO}_2)\text{CO}_3\text{OH}\}_3\cdot10\text{H}_2\text{O}.\) \textit{J. Chem. Soc., Chem. Commun.}, 1597–1598 (1986).

214 Manos, M. J., Keramidas, A. D., Woollins, J. D., Slawin, A. M. Z. & Kabanos, T. A. The first polyoxomolybdenum carbonate compound: Synthesis and crystal structure of \((\text{NH}_4)_2\{(\text{Mo}^\text{IV}_{6}\text{O}_6)\{(\mu^\text{IV}-\text{CO}_3)\{(\mu^\text{IV}-\text{CO}_3)\{(\mu^\text{IV}-\text{OH})\}_3\cdot0.5\text{CH}_3\text{OH}.\) \textit{J. Chem. Soc. Trans.} \textbf{3}, 3419–3420 (2001). Haushalter, R. C. & Lai, F. W. \([\text{Et}_4\text{N}]_6[\text{Na}_{14}\text{Mo}_{24}\text{P}_{17}\text{O}_{97}(\text{OH})_{31}]\cdot\text{xH}_2\text{O}:\) a hollow cluster filled with 12 \text{Na}^+ ions and a \text{H}_3\text{PO}_4 molecule. \textit{Angew. Chem. Int. Ed.} \textbf{28}, 743–746 (1989).

215 Mundit, L. A. & Haushalter, R. C. Hydrothermal synthesis of a layered zinc molybdenum phosphate with octahedral and tetrahedral zinc: structure of \((\text{TMA})_2(\text{H}_2\text{O})_2[\text{Zn}_3\text{Mo}_{12}\text{O}_{30}(\text{HPO}_4)_2_\text{H}_2\text{PO}_4\text{H}_6]_\cdot11.5\text{H}_2\text{O}.\) \textit{Inorg. Chem.} \textbf{31}, 3050–3053 (1992).

216 Mundit, L. A. & Haushalter, R. C. Hydrothermal synthesis, structure, and sorption properties of the new microporous ferric molybdenum phosphates \([\{(\text{CH}_3)_3\text{N}\}_2(\text{NH}_4)_2[\text{Fe}_3\text{Mo}_{12}\text{O}_{30}(\text{H}_2\text{PO}_4\text{H}_6)(\text{HPO}_4\text{H}_6)]\cdot\text{nH}_2\text{O}\) and \([\{(\text{CH}_3)_3\text{N}\}_2\text{Na}_4[\text{Fe}_2\text{Mo}_{12}\text{O}_{30}(\text{H}_2\text{PO}_4\text{H}_6)]\cdot\text{nH}_2\text{O}.\) \textit{Inorg. Chem.} \textbf{32}, 1579–1586 (1993).

217 Cao, G., Haushalter, R. C. & Strohmaier, K. G. A novel polyoxo molybdenum(V) organophosphonate anion having a sandwich structure: synthesis and crystal structure of \([\text{N}(\text{C}_6\text{H}_5\text{H}_4\text{N})_2(\text{Na}_3(\text{H}_2\text{O})_2[\text{Na}[\text{Mo}_6\text{O}_{15}(\text{O}_2\text{PC}_6\text{H}_5)(\text{HO}_2\text{PC}_6\text{H}_5)]_\text{H}_2\text{O}.\) \textit{Inorg. Chem.} \textbf{32}, 127–128 (1993).

218 K. M., Khan, M. I., Chen, Q. & Zubieta, J. Oxomolybdenum (V) polyanion clusters. Hydrothermal syntheses and structures of \((\text{NH}_4)_2\text{Na}_2[\text{Na}[\text{Mo}_6\text{O}_{12}(\text{H}_2\text{O})_2(\text{OP}_2\text{PC}_6\text{H}_5)]_\text{H}_2\text{O}]_\cdot6\text{H}_2\text{O}\) and \((\text{C}_6\text{H}_5\text{CH}_2\text{NH}_2)_2[\text{K}_2(\text{Mo}_6\text{O}_{12}(\text{H}_2\text{O})_2)(\text{O}_2\text{PC}_6\text{H}_5)]_\text{H}_2\text{O}\)·10\text{H}_2\text{O} and their relationship to the binuclear \([\text{Et}_4\text{N}]_{10}\text{Mo}_6\text{O}_{18}(\text{H}_2\text{O})_5\cdot5\text{H}_2\text{O}.\) \textit{Inorg. Chem. Acta} \textbf{235}, 135–145 (1995).

219 Manos, M. J., Keramidas, A. D., Woollins, J. D., Slawin, A. M. Z. & Kabanos, T. A. The first polyoxomolybdenum carbonate compound: Synthesis and crystal structure of \((\text{NH}_4)_2\{(\text{Mo}^\text{IV}_{6}\text{O}_6)\{(\mu^\text{IV}-\text{CO}_3)\{(\mu^\text{IV}-\text{CO}_3)\{(\mu^\text{IV}-\text{OH})\}_3\cdot0.5\text{CH}_3\text{OH}.\) \textit{J. Chem. Soc. Trans.} \textbf{3}, 3419–3420 (2001).

223 Xu, L. et al. A manganese molybdenum phosphate with a tunnel: hydrothermalsynthesis, structure and catalytic properties of

\((\text{NH}_4\text{CH}_2\text{CH}_2\text{NH}_3)_{10}(\text{H}_2\text{O})_3[(\text{H}_2\text{O})_2]\text{Na}_2[\text{MnMo}_{12}\text{O}_{24}(\text{OH})_6(\text{PO}_4)_4(\text{PO}_3\text{OH})_4][\text{MnMo}_{12}\text{O}_{24}(\text{OH})_6(\text{PO}_4)_6(\text{PO}_3\text{OH})_2]\cdot9\text{H}_2\text{O}].\) New J. Chem. 23, 1041–1044 (1999).

236 Müller, A. & Döring, J. A novel heterocluster with \(D_3\)-symmetry containing twenty-one core atoms: \([\text{As}^{III}_{12}\text{V}^{IV}_{15}\text{O}_{42}(\text{H}_2\text{O})]^{5–}\). Angew. Chemie Int. Ed. English 27, 1721 (1988).

237 Antonova, E., Näther, C. & Bensch, W. Assembly of \([\text{V}_{15}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})]^{6–}\) cluster shells into higher dimensional aggregates via weak Sb–N/Sb–O intercluster interactions and a new polyoxovanadate with a discrete \([\text{V}_{16}\text{Sb}_4\text{O}_{42}(\text{H}_2\text{O})]^{5–}\) cluster
238 Wutkowski, A., Nätter, C., Kögerler, P. & Bensch, W. Antimonato polyoxovanadate based three-dimensional framework exhibiting ferromagnetic exchange interactions: synthesis, structural characterization, and magnetic investigation of
\([\text{Fe(C}_6\text{H}_4\text{N}_2\text{)}_2\text{]}_3[\text{V}_{15}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})]\cdot 8\text{H}_2\text{O}. \text{Inorg. Chem.} \textbf{52}, 3280–3284 (2013).

243 Kiebach, R., Nätter, C. & Bensch, W. \([\text{C}_6\text{H}_7\text{N}_3\text{]}_4[\text{Sb}_4\text{V}_{16}\text{O}_{42}]\cdot 2\text{H}_2\text{O}\) and \([\text{NH}_4\text{]}_4[\text{Sb}_8\text{V}_{14}\text{O}_{42}]\cdot 2\text{H}_2\text{O}\): the first isolated Sb derivates of the \([\text{V}_{16}\text{O}_{42}]\) family. \textit{Solid State Sci.} \textbf{8}, 964–970 (2006).

248 Khan, M. I., Yohannes, E. & Doedens, R. J. A novel series of materials composed of arrays of vanadium oxide container molecules, \([\text{V}_{18}\text{O}_{42}(\text{X})]\) \(\text{X = H}_2\text{O, Cl, Br}\): synthesis and characterization of \([\text{M}_2(\text{H}_2\text{N}(\text{CH}_2)_2\text{NH}_2)]_2[\text{M}(\text{H}_2\text{N}(\text{CH}_2)_2\text{NH}_2)]_2\text{V}_{18}\text{O}_{42}(\text{X})\cdot 9\text{H}_2\text{O}\) (M = Zn, Cd). \textit{Inorg. Chem.} \textbf{42}, 3125–3129 (2003).

249 Müller, A. & Döring, J. Topologisch und elektronisch bemerkenswerte “reduzierte” cluster des typs \([\text{V}_{18}\text{O}_{42}(\text{X})]\) \(\text{X = SO}_4\text{, VO}_4\) mit \(T_e\)-symmetrie und davon abgeleitete cluster \([\text{V}_{18-p}\text{As}_p\text{O}_{42}(\text{X})]\) \(\text{X = SO}_4\text{, SO}_4\text{, H}_2\text{O}\; p = 3, 4\). \textit{ZAAC} \textbf{595}, 251–274 (1991).

39

