
Database Preservation Toolkit

A relational database conversion and normalization tool

Bruno Ferreira
KEEP SOLUTIONS

Rua Rosalvo de Almeida 5
4710 Braga, Portugal
bferreira@keep.pt

Luís Faria
KEEP SOLUTIONS

Rua Rosalvo de Almeida 5
4710 Braga, Portugal

lfaria@keep.pt

José Carlos Ramalho
University of Minho

4710 Braga, Portugal
jcr@di.uminho.pt

Miguel Ferreira
KEEP SOLUTIONS

Rua Rosalvo de Almeida 5
4710 Braga, Portugal
mferreira@keep.pt

ABSTRACT
The Database Preservation Toolkit is a software that au-
tomates the migration of a relational database to the sec-
ond version of the Software Independent Archiving of Re-
lational Databases format. This flexible tool supports the
currently most popular Relational Database Management
Systems and can also convert a preserved database back
to a Database Management System, allowing for some spe-
cific usage scenarios in an archival context. The conversion
of databases between different formats, whilst retaining the
databases’ significant properties, poses a number of interest-
ing implementation issues, which are described along with
their current solutions.

To complement the conversion software, the Database Vi-
sualization Toolkit is introduced as a software that allows ac-
cess to preserved databases, enabling a consumer to quickly
search and explore a database without knowing any query
language. The viewer is capable of handling big databases
and promptly present search and filter results on millions of
records.

This paper describes the features of both tools and the
methods used to pilot them in the context of the European
Archival Records and Knowledge Preservation project on
several European national archives.

Keywords
Preservation; Archive; Relational Database; Migration; Ac-
cess; SIARD

1. INTRODUCTION
Databases are one of the main technologies that support

information assets of organizations. They are designed to
store, organize and explore digital information, becoming
such a fundamental part of information systems that most
would not be able to function without them [5]. Very often,
the information they contain is irreplaceable or prohibitively
expensive to reacquire, making the preservation of databases
a serious concern.

The Database Management System (DBMS) is the soft-
ware that manages and controls access to databases, which
can be described as a collection of related data. These two

intrinsically related technologies function together to per-
form tasks such as information storage and retrieval, data
transformation and validation, privilege management and
even the enforcement of important business constraints. The
most popular databases are based on the relational model1

proposed by Codd. [5, 4]
The migration of the relational database information into

a format well suited for long-term preservation is one of the
most accepted strategies to preserve relational databases.
This strategy consists in exporting the information of the
relational database, including descriptive, structural and be-
havioural information, and content, to a format suitable for
long-term preservation. Such format should be able to main-
tain all significant properties of the original database, whilst
being widely supported by the community and hopefully
based on international open standards [7]. Few formats fit
this criteria, being the SIARD format one of the main con-
tenders.

The Software Independent Archiving of Relational Data-
bases (SIARD) format was developed by the Swiss Federal
Archives and was especially designed to be used as a format
to preserve relational databases. Its second version, SIARD
2, retains the (most commonly agreed upon) database sig-
nificant properties and is based on international open stan-
dards, including Unicode (ISO 10646), XML (ISO 19503),
SQL:2008 (ISO 9075), URI (RFC 1738), and the ZIP file
format. [6, 8, 9, 11, 14, 15]

The manual creation of SIARD files is impractical, the-
refore an automatic conversion system was developed – the
Database Preservation Toolkit (DBPTK). This software can
be used to create SIARD files from relational databases in
various DBMSes, providing an unified method to convert
databases to a database agnostic format that is able to re-
tain the significant properties of the source database. The
software uses XML Schema Definition capabilities present
in the SIARD format to validate the archived data and can
also be used to convert the preserved database back to a
DBMS.

The digital preservation process is not complete if the

1According to the ranking at
http://db-engines.com/en/ranking (accessed on Apr. 2016),
where 7 of the top 10 DBMS use the relational model



/................................................zip file root

header/.................... folder for database metadata

metadata.xml

metadata.xsd

version/

2.0/.............empty folder signalling version 2

content/.....................folder for database content

schemaM/............M is an integer starting with 0

tableN/ ..........N is an integer starting with 0

tableN.xml.........same N used in tableN/

tableN.xsd.........same N used in tableN/

Figure 1: Basic SIARD 2 directory structure.

archived information cannot be accessed. To access and ex-
plore digitally preserved databases, the Database Visualiza-
tion Toolkit (DBVTK) is being developed. This software
can load databases in the SIARD format and display their
descriptive, structural and behavioural information and con-
tent. The viewer also provides the functionality to search
and filter the database content as well as export search re-
sults.

2. SIARD 2
The second version of the SIARD format emerged from

lessons learnt by creators and users of database preservation
formats. The SIARD format was originally developed by the
Swiss Federal Archives in 2007 and is being used by many
archives worldwide. In 2013, the SIARD format became
a Swiss E-Government Standard (eCH-0165). The SIARD-
DK is a variation of the SIARD format created by the Danish
National Archives to fit their specific needs. The Database
Markup Language (DBML) format, created at University
of Minho, was used by the Repository of Authentic Digi-
tal Objects (RODA)2 software to preserve databases at the
Portuguese National Archives3. The Archival Data Descrip-
tion Markup Language (ADDML) is the format used by the
Norwegian National Archives to describe collections of data
files. [3, 12, 13, 1]

The SIARD 2 format, in its most basic form, consists of a
ZIP file that contains a hierarchy of folders and files of XML
and XSD (XML Schema) format, illustrated in figure 1. The
XML files inside the SIARD file hold database metadata
information and contents.

The metadata.xml file contains database description in-
formation, such as the database name, description and ar-
chival date, the archivist name and contact, the institution
or person responsible for the data; database structural in-
formation, including schemas, tables and data types; and
behavioural information like keys, views and triggers. Such
information is useful not only to document the database but
also to allow the reliable export of its structure on a different
DBMS.

The tableN.xml files correspond to each of the database
tables and hold the content of the rows and cells from that
table. All XML files are accompanied by a corresponding
XML Schema file, that can be used to validate the structure
and contents of the XML files.

2Current version of RODA is available at
http://www.roda-community.org/
3Direcção-Geral do Livro, dos Arquivos e das Bibliotecas

The SIARD format includes advanced features such as
the support for Large Objects (LOBs)4, and ZIP compres-
sion using the deflate method [15]. SIARD 2 brings many
improvements over the original SIARD and other database
preservation formats, mainly the support for SQL:2008 stan-
dard and data types, including arrays and user defined types;
the strict validation rules present in XML Schema files to en-
force valid XML structure and contents; and allowing LOBs
to be saved in the tableN.xml file, saved as files in a folder
inside the SIARD, or saved as files in a location outside
the SIARD file. Furthermore, the SIARD 2 specification
allows LOB files to be saved in multiple locations or stor-
age devices outside the SIARD file, increasing support for
databases which contain large amounts of LOBs.

3. DATABASE PRESERVATION
TOOLKIT

The DBPTK is an open-source project5 that can be exe-
cuted in multiple operating systems and run in the command-
line. It allows the conversion between database formats, in-
cluding connection to live Relational Database Management
Systems, for preservation purposes. The toolkit allows ex-
traction of information from live or backed-up databases into
preservation formats such as SIARD 2. Also, it can import
back into a live DBMS, to provide the full DBMS function-
ality, such as SQL6 querying, on the preserved database.

This tool was part of the RODA project and has since
been released as a project on its own due to the increasing
interest on this particular feature. It is currently being de-
veloped in the context of the European Archival Records and
Knowledge Preservation (E-ARK) project together with the
second version of the SIARD preservation format – SIARD
2.

The DBPTK uses a modular approach, allowing the com-
bination of an import module and an export module to en-
able the conversion between database formats. The import
module is responsible for retrieving the database information
(metadata and data), whilst the export module transcribes
the database information to a target database format. Each
module supports the reading or writing of a particular data-
base format or DBMS and functions independently, making
it easy to plug in new modules to add support for more
DBMS and database formats. The conversion functionality
is provided by the composition of data import with data
export.

Currently supported DBMSes include Oracle, MySQL,
PostgreSQL, Microsoft SQL Server and Microsoft Access.
All of these support import and export, except Microsoft
Access where only import is available, i.e. conversion from
Microsoft Access is possible, but conversion to Microsoft Ac-
cess is not. All these modules use the Java Database Con-
nectivity (JDBC) modules as a generic starting point, and
then deviate as much as needed to account for functionality
specific to each DBMS.

The base JDBC import and export modules, given the
correct configurations and dependencies, may enable con-

4Large Objects, usually stored in binary format in data-
bases. Can also be referred to as BLOBs or CLOBs if they
contain binary or character data, respectively.
5Software and documentation available at
http://www.database-preservation.com
6SQL: Structured Query Language



MySQL

Oracle

SQL Server

PostgreSQL

JDBC

SIARD 1

SIARD 2

MS Access

MySQL

Oracle

SQL Server

JDBC

SIARD 1

SIARD 2

PostgreSQL

SIARD DK

Import modules Export modulesStreaming data model

SIARD DK

Metadata

Content

Figure 2: Application architecture overview

version to or from any DBMS. Being DBMS-agnostic, this
technology can be used to connect to a wide range of data-
base products, however some specific features (e.g. data
types) may not be supported and may hinder a fully suc-
cessful conversion.

The SIARD modules are an essential part of DBPTK, be-
ing used to allow the conversion of databases to and from this
database preservation format. The SIARD export modules
allow filtering out some database tables, as well as exporting
contents from views as if they were database tables.

Attending to security and data privacy concerns, modules
default to using secure (encrypted) connections to DBMSes
if such a connection is supported by the DBMS.

Figure 2 depicts an overview of the information flow in the
application, with import modules as information providers,
extracting the information from a source and mapping it into
an internal application model; and export modules imple-
menting the inverse process, by mapping information from
the internal model to the target DBMS. This mapping may
be specific for each DBMS module, as most DBMSes have
specific or incompatible features.

In the first phase of the conversion, the database meta-
data (descriptive, structural and behavioural information)
is fetched by the import module and transcribed to the tar-
get Database Management System or format by the export
module. This phase is followed by the conversion of database
contents. Using streaming and optimizing interactions with
the database, the contents are converted, record by record,
with low computing resource requirements. Finally, system
resources are released, concluding the execution. While this
is a common overview of a typical execution, specific mod-
ules can slightly diverge from this approach to improve per-
formance and error handling.

The conversion is prioritized by firstly converting the data-
base content information without loss, secondly trying to
keep the database structural metadata identical to the orig-
inal database, and thirdly attempting to translate the data-
base behavioural metadata to the target database. In practi-
cal terms, this means that in cases where the target DBMS
does not support the data type used in the original data-
base, an equivalent or less restrictive data type is used; this
changes the database structure metadata, but avoids data-
base content information losses. The database behavioural
information is the last priority in the conversion because it

is prone to failure (with a warning) due to source DBMSes
that do not check the invariants and constraints imposed by
behaviour like primary and foreign keys, or views which have
DBMS-specific and untranslatable queries, not supported in
the target DBMS.

Figure 4 introduces an overview of a database structure
as a hierarchy. As most database structures fit this struc-
ture entirely or partially, it is used by all modules. How-
ever, there are some database systems, e.g. MySQL, that
do not fit this structure entirely, as they have no schemas.
In these cases, all the information that would be accommo-
dated in a schema is moved up to the database component,
resulting in a slightly different component that performs as
both a database and a single schema, depicted in figure 5.
DBPTK import modules work around this issue by treating
the schema-less database as if it were a database containing
a single schema, moving any tables, views, routines and user
defined types to this schema.

Most DBMSes implement SQL with slight deviations from
the SQL standard. These derived query languages are com-
monly referred to as SQL flavours and make it difficult to
create a set of queries compatible with the majority of DBM-
Ses. To create queries, there is a query generator, based on
the SQL standard, serving as a base for a few flavour-specific
query generators. The import and export modules use the
most specialized SQL generator considering the DBMS SQL
flavour, guaranteeing equivalent functionality across differ-
ent DBMSes.

SQL flavours often include new SQL data types or alias
to standard SQL data types, but internal data types used in
DBPTK are based on SQL standard data types. During the
database conversion process, the import module maps the
data types to appropriate internal data types, and the export
module does the inverse process, by mapping the internal
data types to data types supported by the target Database
Management System or format. The aforementioned process
is observable in figure 3.

Most DBMS implementation specific SQL types are au-
tomatically converted to standard SQL types as they are
obtained by the import modules, but there are a few cases
that need to be handled specially for each DBMS. An ex-
ample of such case is the YEAR MySQL data type7, depicted
in figure 3, which the import module first perceives as rep-
resenting a date, but is in fact a 4 digit numeric type (cor-
responding to the SQL:2008 standard type “NUMERIC(4)”).
Since PostgreSQL NUMERIC(4) data type definition follows
the SQL standard, that designation is used for the target
data type.

The data type precision (or size) and scale usually corre-
sponds to the first and second parameters of the data type
definition. However, the semantics for those parameters may
also vary with the SQL implementation, requiring, for those
cases, a specialized interpretation and conversion to an in-
ternal standard representation.

Due to the prioritization of the database content informa-
tion over the database structural metadata, the data type
conversion does not ensure that the target type will be the
same as the original type, but rather a data type broad
enough for all values that can be represented by the original
data type, without any data losses (i.e. the target data type
domain contains original data type domain). An example

7MySQL YEAR data type documentation available at
http://dev.mysql.com/doc/refman/5.7/en/year.html



YEAR(2) NUMERIC(4)

MySQL data type PostgreSQL data typeInternal Object Model
for the data type

Original type: YEAR(2)
Type group: Exact Numeric

SQL standard type: NUMERIC
Precision: 4

Scale: 0
Designation: NUMERIC(4)

MySQL
import module

PostgreSQL
export module

Figure 3: Conversion of MySQL YEAR data type to PostgreSQL

Database

Users

User roles

User privileges

Schemas

Tables

Columns

Primary key

Candidate keys

Foreign keys

Constraints

Triggers

Views

Columns

Routines

User defined types

Figure 4: Database structure as an hierarchy.

of this could be the conversion of a data type VARCHAR(500)

(capable of holding a variable length sequence of up to 500
characters) to an hypothetical DBMS in which the maxi-
mum number of characters supported by the VARCHAR data
type is 200. In this case, the module would choose a TEXT

data type (provided that it had the capacity to hold 500
or more characters), ensuring that all character sequences
could be represented by the target data type without any
information loss.

The modules may also opt for using a different data type
instead of a deprecated one. In some cases, the data type
is changed to an alias data type with the exact same func-
tionality, such as the NUMERIC and DECIMAL types on MySQL
and Microsoft SQL Server.

During the conversion, data types and value changes are
registered in a report file for manual analysis. This file may
also be used as additional documentation for the generated
SIARD file.

Some optimizations are also carried out by specific mod-
ules. One of those optimizations is implemented in all DBMS
export modules and postpones adding database behavioural
information until after the database content information is
completely converted. If the behavioural information was to
be added before the database content conversion, all inserted
table records would be subject to a series of validations, such
as primary key uniqueness or foreign keys presence, upon be-
ing inserted in the target database. Postponing the addition

Database

Users

User roles

User privileges

Tables

Columns

Primary key

Candidate keys

Foreign keys

Constraints

Triggers

Views

Columns

Routines

User defined types

Figure 5: Schema-less database structure as an hi-
erarchy.

of these elements executes those validations only once, thus
reducing the time needed to insert a table record in the tar-
get database. Also it allows to migrate the database even if
constraints fail.

When converting the database contents, a flexible internal
model must be used to represent different kinds of informa-
tion and avoid data losses. The import module should select
the most adequate model to be used for each record during
a conversion.

Some values obtained from the database may not be in
a standard format and must be converted to the standard
format. A common example of such values are the DATE,
DATETIME, TIMESTAMP and other date or time data types, be-
cause the format used internally by DBPTK is the ISO stan-
dard for representation of dates and times (ISO 8601)[10]
and some dates are not provided in this format. Specific
examples include the YEAR MySQL data type that must be
converted to a numeric value in the range 1970 to 2069, in-
clusive.

3.1 Evaluating the Conversion
To ascertain the quality of the conversions made using

DBPTK, a testing system was developed. The system was
named roundtrip testing and is used to check if converting
a database to a different Database Management System or
format and then converting it back to the original Database
Management System or format results in any data changes
or losses.



DB-A

Database 
Preservation 

Toolkit

DB-B
DB-C

Database 
Preservation 

Toolkit

X Import 
Module

X Export 
Module

Y Export 
Module

Y Import 
Module

Comparison

Result
pass or fail

Figure 6: The roundtrip test

The roundtrip test is described below and illustrated in
figure 6.

1. Create a new database, DB-A, in a Database Manage-
ment System or format, DBMS X, with the intended
test data (e.g. a table containing LOBs);

2. Use DBPTK to convert DB-A to a different Database
Management System or format, DBMS Y, creating
database DB-B ;

3. Use DBPTK to convert DB-B back to DBMS X, cre-
ating database DB-C ;

4. Compare DB-A and DB-C. The test passes if the data-
base content information is unchanged.

Using this method, four modules are tested (two import
modules and two export modules). The roundtrip test fails
if any database content information is changed or lost during
the conversions.

It is noteworthy that the comparison step may still con-
sider the conversion to have succeeded when some database
structure and behavioural information was lost or changed.
This tolerance exists to accommodate for aliased data types
and any incompatibilities between Database Management
Systems or formats. An example of this is the YEAR(2) data
type from MySQL, which is changed to NUMERIC(4) when
converting to PostgreSQL (see figure 3) and would be cre-
ated as NUMERIC(4) when converting the database back to
MySQL.

4. DATABASE VISUALIZATION
TOOLKIT

The preservation of databases is only successful if there
is a way to access the archived databases. To accomplish
this, the DBVTK is being developed, allowing archivists and
consumers to preview and explore preserved databases in an
intuitive interface.

The DBVTK is a scalable web-service that is able to serve
multiple archived databases. It displays database descrip-
tion information, structural information, behaviour informa-
tion and content, providing the ability to search and filter
records from a single table or a whole database. Advanced
search functionality allows filtering records using multiple

search criteria and advanced data searches, such as search-
ing date and time ranges. The DBVTK is optimized to
provide almost instantaneous responses to searches on mil-
lions of records. Search results can then be exported to for-
mats such as PDF (Portable Document Format) and CSV
(Comma Separated Values).

When searching tables containing primary and foreign
keys, it is often useful to be able to follow these relations and
see the related records from the other table. This function-
ality in the DBVTK is triggered by clicking a cell containing
a primary or foreign key, which will show the records from
the other table related to the key. The database structural
and description information can also be used to understand
these relations.

The DBVTK can integrate with an external authentica-
tion and authorization system, providing the means to iden-
tify the users and verify their permissions to access each
database.

After logging in, users will be able to see the list of data-
bases they can access. By clicking one of the databases the
user is shown some database metadata, such as the data-
base name, description or data owner; from there the user
can begin searching and exploring the database.

The DBVTK is not backed by a relational DBMS due to
scalability and performance issues, instead the Apache Solr8

platform is being used to store preserved database records.
Apache Solr is an open source enterprise search platform.
It was chosen for its versatility, scalability, and ability to
provide almost instantaneous responses to searching and fil-
tering queries on millions of records.

In order to provide access to preserved databases, the
DBVTK requires the database to be loaded into Solr. This
is achieved using DBPTK with a Solr export module. This
module grants DBPTK the ability to add a SIARD database
to a Solr platform such as the one used by the DBVTK (see
the top part of figure 7).

As consumers use web-browsers to access the DBVTK web
interface and explore databases, the back-end server appli-
cation retrieves the database records and sends them to the
web interface, which shows the records to the consumer (see
the bottom part of figure 7).

8Apache Solr is available at
http://lucene.apache.org/solr/



DBMS
Preservation 

Format

Solr

Database 
Preservation 

Toolkit

E-ARK Database Viewer
Web interface

accessed using a web browser

E-ARK Database Viewer
Back-end server application

Figure 7: Application architecture overview

DB ViewerArchive

Conversion
using DBPTK

SIARDSource DB

DBMS
Conversion

using DBPTK

Figure 8: Usage scenario for an archive

5. USAGE SCENARIOS
The Database Preservation Toolkit and the Database Vi-

sualization Toolkit can be used in multiple cases to achieve
different goals in an archive context.

1. Producer using DBPTK during the pre-ingest
phase

During the pre-ingest phase, the producer can use DBPTK
to convert a database to SIARD 2. After adding some doc-
umentation and other information, the producer can deliver
the database to the archive. Such procedure is depicted in
the left part of figure 8 and the following usage scenarios
correspond to the right part of the same figure.

2. Consumer using DBVTK to explore a database

The archivist grants the consumer access to a database,
and after logging in to the DBVTK web interface, the con-
sumer is able to search and filter database records at will.

3. Consumer using DBVTK to explore a database
prepared by an expert archivist (add views)

To serve a database with a specific view requested by
a consumer, an archivist can use DBPTK to convert the
SIARD database to a supported DBMS. The archivist can

then use the DBMS to create the requested views, create
a new SIARD using DBPTK. The new SIARD file can be
exported to the DBVTK.

After being given access to the database, the consumer
can access it using the DBVTK web interface to explore
and search the records from the views.

4. Consumer using DBVTK to explore a database
prepared by an expert archivist (serve only specific
views)

An alternative to the previous method can be used when
the archivist only wants to make part of the database in-
formation available to the consumer. By providing some
options when creating the new SIARD file on DBPTK, the
archivist may create a SIARD file containing a subset of the
tables and views present in the source database.

Even after obtaining access to the new database, the con-
sumer will only be able to access information present in the
tables and views that were exported to SIARD. This particu-
larly useful to restrict or completely block access to sensitive
database information.

5. Researcher performing complex queries and
analysis

A researcher may initially act as a consumer, requesting
access and exploring databases until a suitable database is
found. At that point, the researcher could obtain the suit-
able database in SIARD format, use DBPTK to convert
it to a supported DBMS, and finally use the DBMS func-
tionality to research the data. This allows a researcher to
use Data Mining and OLAP techniques to research archived
databases.

6. E-ARK PILOTS
The DBPTK is being piloted in the context of the E-

ARK project by the Danish National Archives, the National
Archives of Estonia and the National Archives of Hungary.
[2]

The Danish National Archives pilot goal is to make four
successful data extractions from live authentic databases
into the SIARD 2.0 format:

• Extract records from Microsoft SQL Server database
bigger than 100 GB (with a minimum success rate of
90%);

• Extract records from a large database containing doc-
uments;

• Extract records from Ms SQL database containing 50-
60 tables and about 90.000 records (with a minimum
success rate of 90%);

• Extract records from Microsoft SQL Server database
containing about 5 million records.

One of the National Archives of Hungary goals is to con-
vert an Oracle database to and from a preservation format,
and accessing it using the DBVTK. This database is not nor-
malized and contains more than 300.000 cases of the Hun-
garian Prosecution Office. The archives also aim to migrate
two or more databases with different characteristics and con-
taining both restricted and open content.



The National Archives of Estonia pilot aims to migrate
a database with a complex structure and around 200.000
records.

The pilots demonstrate the potential benefits of these tools
and how they can be used for easy and efficient access to
archived records.

7. CONCLUSIONS AND FUTURE WORK
The Database Preservation Toolkit aims to support the

migration of databases to the SIARD database preservation
format and back to a DBMS. The SIARD format retains the
database significant properties and its data can be validated
using XML Schema Definition. Furthermore, by prioritizing
the conversion, DBPTK ensures that no database content
information is lost, and attempts to map the database struc-
tural and behavioural information to standard SQL, whilst
keeping the original information as documentation. The
software was made flexible to support different Database
Management Systems and formats, including their specific
features and optimizations. Moreover, DBPTK performs on
low computing hardware requirements, even when convert-
ing databases containing millions of records.

The Database Visualization Toolkit aims to provide access
to preserved databases, and achieves this by providing a fast
and intuitive interface in which consumers can search and
explore the preserved databases.

Both tools will be validated by the E-ARK pilots, by the
European national Archives, ensuring that they are quali-
fied to be used with real-world databases in a real archive
environment.

Future work includes continuing the development of both
tools, using means like the roundtrip tests and feedback from
the E-ARK pilots to ensure top software quality and stabil-
ity.

8. ACKNOWLEDGMENTS
This work is supported by the European Commission un-

der FP7 CIP PSP grant agreement number 620998 – E-
ARK.

9. REFERENCES
[1] ADDML - Archival Data Description Markup

Language 8.2. Standard, Norwegian National
Archives, Mar. 2011.

[2] I. Alföldi and I. Réthy. D2.3 - detailed pilots
specification. Public deliverable, E-ARK, Mar. 2016.

[3] H. Bruggisser, G. Büchler, A. Dubois, M. Kaiser,
L. Kansy, M. Lischer, C. Röthlisberger-Jourdan,
H. Thomas, and A. Voss. eCH-0165 SIARD Format
Specification. Standard, Swiss Federal Archives,
Berne, Switzerland, 2013.

[4] E. F. Codd. A relational model of data for large
shared data banks. Commun. ACM, 13(6):377–387,
June 1970.

[5] T. M. Connolly and C. E. Begg. Database Systems: A
Practical Approach to Design, Implementation and
Management (4th Edition). Pearson Addison Wesley,
2004.

[6] L. Faria, A. B. Nielsen, C. Röthlisberger-Jourdan,
H. Thomas, and A. Voss. eCH-0165 SIARD Format
Specification 2.0 (draft). Standard, Swiss Federal
Archives, Berne, Switzerland, Apr. 2016.

[7] H. Heslop, D. Simon, and A. Wilson. An Approach to
the Preservation of Digital Records. National Archives
of Australia, Canberra, 2002.

[8] ISO 10646:2012, Information technology – Universal
Coded Character Set (UCS). Standard, International
Organization for Standardization, June 2012.

[9] ISO 19503:2016, Information technology – XML
Metadata Interchange (XMI). Standard, International
Organization for Standardization, Jan. 2016.

[10] ISO 8601:2004, Data elements and interchange
formats – Information interchange – Representation of
dates and times. Standard, International Organization
for Standardization, 2004.

[11] ISO 9075:2008, Information technology – Database
languages – SQL. Standard, International
Organization for Standardization, 2008.

[12] M. Jacinto, G. Librelotto, J. C. Ramalho, and P. R.
Henriques. Bidirectional conversion between XML
documents and relational databases. In The 7th
International Conference on Computer Supported
Cooperative Work in Design. COPPE/UFRJ, 2002.

[13] J. C. Ramalho, M. Ferreira, L. Faria, and R. Castro.
Relational database preservation through xml
modelling. International Workshop on Markup of
Overlapping Structures (Extreme Markup 2007), 2007.

[14] RFC 1738, Uniform Resource Locators (URL).
Standard, Internet Engineering Task Force (IETF),
1994.

[15] .ZIP File Format Specification, version 6.3.3.
Standard, PKWARE Inc., Sept. 2012.


