Functional Access to Forensic Disk Images in a Web
Service

Kam Woods
UNC Chapel Hill

CB #3360, 100 Manning Hall

Chapel Hill, NC 27599-3360
919-962-8366

kamwoods@email.unc.edu

Oleg Stobbe
University of Freiburg
Hermann-Herder Str. 10
79104 Freiburg, Germany

oleg.stobbe@rz.uni-
freiburg.de

ABSTRACT

We describe a hybrid approach for access to digital objects
contained within forensic disk images extracted from phys-
ical media. This approach includes the use of emulation-
as-a-service (EaaS) to provide web-accessible virtual envi-
ronments for materials that may not render or execute ac-
curately on modern hardware and software, and the use of
digital forensics software libraries to produce web-accessible
file system views to support single-file access and provide
visualizations of the file system.

General Terms
Frameworks for digital preservation; preservation strategies
and workflows

Keywords

Emulation, access, digital forensics

1. INTRODUCTION

Support for meaningful use of digital objects often requires
retention of the environment (or aspects of the environment)
in which they were produced. This can help to reproduce
significant properties of the digital objects [2], as well as
reflecting essential contextual information.

For materials acquired on fixed and removable digital me-
dia, addressing this need begins with acquiring a complete
disk image, which is a block-by-block copy of the disk’s stor-
age. No prior knowledge of the operation system (OS) or file
system on the disk is required to perform the acquisition.

iPres 2015 conference proceedings will be made available under a Creative
Commons license.

With the exception of any logos, emblems, trademarks or other nomi-
nated third-party images/text, this work is available for re-use under a
Creative Commons Attribution 3.0 unported license. Authorship of this
work must be attributed. View a copy of this licence at http://
creativecommons.org/licenses/by/3.0/legalcode.

Thomas Liebetraut
University of Freiburg
Hermann-Herder Str. 10
79104 Freiburg, Germany
thomas.liebetraut@rz.uni-
freiburg.de

Christopher A. Lee
UNC Chapel Hill

CB #3360, 100 Manning Hall
Chapel Hill, NC 27599-3360

919-962-8366
callee@ils.unc.edu

Klaus Rechert
University of Freiburg
Hermann-Herder Str. 10
79104 Freiburg, Germany
klaus.rechert@rz.uni-
freiburg.de

Similarly, one can search for patterns within the bitstream
(e.g. email addresses, credit card numbers, phone numbers)
without necessarily knowing or having software support for
the original OS or file system [1].

Analysis and description tasks can require mounting of the
original file system. These include navigation of the files and
folders; extraction of specific files or folders; extraction of file
system metadata; and reporting the number and types of
files on disk. Additional digital curation actions also require
software that can recognize, access and render information
from specific file formats. These include file characteriza-
tion, validation, metadata extraction and visual inspection.

File systems and file formats are subject to obsolescence,
and digital curation professionals often process born-digital
materials that are not supported by contemporary comput-
ing environments. One response to this challenge is to in-
stall dedicated software (applications or complete operating
systems) on the machine being used to process the materi-
als, or to consolidate these tools into a specialized environ-
ment. An example of this is the BitCurator environment?, a
suite of open source digital forensics and data analysis tools
to help collecting institutions (libraries, archives, and mu-
seums) process born-digital materials. This environment,
developed through a series of grants from the Andrew W.
Mellon Foundation, has been customized to work with many
obsolete file systems and file types. It also contains software
for the creation of forensic disk images; analysis of files and
file systems; extraction of file system metadata; identifica-
tion of sensitive information; and identification and removal
of duplicate files.

There is always the possibility of acquiring disks with file
systems and files that are not supported by the available
tools. One also cannot assume that end users will be run-
ning specialized tools on their local machines. An alternative
access strategy is emulation: enabling the user to boot and

!BitCurator, http://www.bitcurator.net/

interact with an original operating system, or attaching the
disk as a secondary drive to an emulated environment typical
of the era in which it was produced. Emulation-as-a-Service
(EaaS) simplifies this process for end users by providing ac-
cess to pre-configured emulation environments within a web
browser.

We present an approach to accessing operating systems and
file systems contained in disk images using both EaaS? and a
dedicated web application to generate views into non-live file
systems. For public (or semi-moderated) access, redaction
of sensitive content is often required. We describe a trace-
able redaction workflow and implementation for restricted
functional access to disk images, supporting different access
levels depending on the requester’s role.

2. RELATED WORK

Capture and analysis of disk images from fixed and remov-
able media is a mainstay of digital forensics practice. The
need to quickly analyze large quantities of digital informa-
tion has led to the development of several modular open-
source tools and platforms to parse file system contents and
identify and analyze features of interest within the file sys-
tems [1].

The development of open-source digital forensics tools to
manipulate common disk image file formats (along with tools
to create and export from them) increases the attractiveness
of digital forensics tools to collecting institutions. These in-
clude libewf, an open source library to create and manipulate
files in the widely-used Expert Witness Format [4].

3. ACCESS WORKFLOW DESCRIPTION

For purposes of this discussion, we assume that one has al-
ready created a disk image along with a description of the
disk’s technical environment (e.g. source descriptions, size
in bytes, file system(s) present). This information is used
to make decisions about the access environment and enable
preparation of any surrogate — for example, if there is data
within the disk image that requires redaction.

3.1 Preparation

It is important to distinguish between two distinct access
modes: interacting with the disk image as a bootable sys-
tem disk (e.g. if the disk contains an operating system);
and attaching the disk as a secondary disk to an emulated
environment. In the latter case, no further measures are re-
quired. The former case requires a hardware generalization
process that we describe below.

First, a description of the original hardware environment
associated with the disk image is examined to identify the
correct emulator configuration (or locate a similar emulated
system prepared previously). Emulators typically provide
only a limited selection of hardware system components —
usually popular devices with broad driver support. For sys-
tems from the 1980s and 1990s, for example, common ISA-
bus hardware devices with virtualization support include the
Soundblaster 16 and AdLib sound cards, the NE2000 net-
work adapter, and the Cirrus VGA graphics adapter.

*bwFLA EaaS, http://bw-fla.uni-freiburg.de

To recreate a system associated with specific hardware, ad-
ditional hardware drivers may need to be installed or re-
placed — at least if full functionality is required. This pro-
cess may require certain changes to the disk image. These
changes, however, must not be applied directly to the (foren-
sic format) disk image, but have to be kept as a separate
change-set, which supports tracking of (technical) modifica-
tions both on a block and file system level.

The result of the preparation process is a set of technical
changes required to run on a generic emulated computer
system. While the acquired image may be altered, this gen-
eralization process also comes with benefits: the machine
setup is fully documented and understood, and hardware
dependencies are explicit and can serve as a preservation
and planning guide for emulating other systems in the fu-
ture.

3.2 Redaction & Dissemination

Bootable system disks are more likely to contain items that
require redaction, including personally identifying and sen-
sitive information within documents explicitly produced by
the original user(s), and other data retained via the normal
operation of the operating system and file system.

As an example, Windows-based systems retain information
corresponding to various user activities, including passwords
(which may not be well encrypted in earlier versions of the
08), lists of recently viewed documents, devices that were
attached to the original system, and - potentially - sensitive
data including online credentials and encryption keys. De-
pending on the version of the OS used when the system was
active, this information may appear in the Registry, in the
hibernation file used for fast resume on system wakeup, and
in unallocated areas of the disk.

In past publications, we have shown how open-source digi-
tal forensics tools such as Simson Garfinkel’s bulk_extractor
may be incorporated into archival workflows, allowing users
preparing collections for access to redact both at the block
level on disk, and to restrict access to individual files [3].

Rather than storing raw disk images, many collecting insti-
tutions are using forensic disk image formats, such as EWF,
which can compress the data, as well as embedding integrity
checks and various forms of metadata. EWF files cannot be
redacted in-place without compromising consistency checks
internal to the file format. One workaround is to export the
raw data from the EWF image, redact the relevant blocks
(or mount and redact specific files or directories), and create
a new EWF file using the redacted raw image. There are
cases when this approach may not be desirable, because it
complicates the provenance record of the stored data.

Alternatively, features identified by bulk_extractor may be
linked to individual file items and recorded in an annotated
Digital Forensics XML (DFXML) file. Working with libewf,
an open-source software library, it is possible to create a
synthetic listing of the contents of the file system within
an EWF file that elides any file or directory item within the
DFXML file that is marked as containing restricted material.

For non-emulated access on the Web — viewing the contents

Option A: Redact

from live image in non-live file system

EaasS via copy-on- with redaction
write overlay mask

Option: Browse

r

L . -
. S

N

bca_webtools
R

A

i . I
| Redact items for
| session via overlay I

List of items
to be redacted

Create copy-on-

write overlay (annotated DFXML)
A A
Analyze with
Forensic disk image —>» bulk_extractor
L and fiwalk
\

(Source media ;

Figure 1: Simplified workflow showing redaction op-
tions for emulation and browsing access.

of the file system in a simulated directory structure within a
web page — this file may be consulted to determine whether
a given file or directory should be presented to the user as a
link. This effectively “blacklists” files containing restricted,
sensitive, or private information from public access.

Creation of a “surrogate” EWF image using an exported,
redacted raw image from the original EWF source is an ob-
vious approach for facilitating restricted access. However,
the storage and time requirements associated with creating
altered copies of original disk images may be prohibitive —
storage alone will effectively double unless the original image
is discarded.

As an alternative, the blacklist annotations to the DFXML
representation of the file system may be passed to the emula-
tion tool to modify the file system immediately prior to user
access, deleting file items and scrubbing unallocated areas
prior to enabling user access. Some access options when pro-
viding redaction services for forensic disk images are shown
in Figure 1.

3.3 Emulation-based Access

Web-based access to born-digital archival materials is of-
ten restricted to individual files that have been specifically
selected for access. These files may be normalized (e.g. con-
verting Microsoft Word to PDF/A), with the only context
for the original environment being in the archival metadata
that accompanies the file.

This can degrade the access experience in several ways. Ex-
ecutable content may not run on modern systems, or may
depend on hardware that is not accommodated by (or sim-
ulated by) modern device drivers. Second, the user may be
more interested in the original structure and organization of
the content than the content itself. Finally, there may be
features or limitations of the production environment (the
bootable operating system) that are of interest with respect
to their influence on the documents or media produced.

Emulated environments can provide a view of the original
production environment, but have traditionally faced vari-
ous hurdles, including lack of computing power on the end-
user’s system and lack of expertise in installing and config-
uring required software. Emulation-as-a-Service addresses
these limitations by offloading the computational require-
ments to a hosted service and providing users with “one-
click” access to bootable environments within a web browser.
Emulation platforms such as QEMU provide access to a
range of operating system environments and disk image for-
mats, but support for formats most common in forensic disk
imaging did not previously exist. In the following section,
we describe a mechanism (including a novel QEMU block
driver) to enable access to forensic disk images in EWF for-
mat.

3.4 Implementation

A disk image captured as an EWF file is effectively read-
only. Any deliberate alterations to the content of the image
will produce error warnings in libraries capable of reading
the contents; these changes will cause embedded cyclic re-
dundancy checks to fail.

To use the EWF image in an emulation setup, a writeable
disk is required. As a first step we create a writeable overlay
file that forwards read operations for any unmodified block
to the original EWF file. Write operations are captured
and only written to the overlay file. This process is known
as copy-on-write. Subsequent reads of such modified blocks
are severed from the overlay file. This mechanism allows
data modifications to be stored separately, independent of
the original digital object during an emulation session. This
allows each digital object to be retained in its preserved,
unmodified state. After an emulated session the overlay-file
can either be discarded or kept for future use or analysis.

To achieve this we have implemented an EWF QEMU block
driver to enable access using QEMU’s disk image handling
tools and to make use of QEMU’s QCOW?2 container for-
mat 3. The QCOW?2 format allows one to store all changed
data blocks and the respective metadata for tracking these
changes in a single file. To define where the original blocks
(before copy-on-write) can be found, a backing file definition
is used. QEMU’s Block Driver API provides a continuous
view on this QCOW?2 container, transparently choosing ei-
ther the backing file or the copy-on-write data structures as
source.

As any block format is allowed in the backing file of a QCOW2
container, the backing file can itself be a QCOW2 container.

3The QCOW?2 Image Format, https://people.gnome.org/
“markmc/qcow-image-format.html, last access 4/8/15.

This allows “chaining” a series of modifications as copy-on-
write files that only contain the actually modified data. One
can use this feature to make individual changes to the origi-
nal environment citable and accessible, for instance, to pro-
vide access to a disk’s redacted version.

This overlay concept and its implementation does not de-
pend on a specific emulator (such as QEMU). It may be
adapted to work with any emulation platform that provides
appropriate access. Listing 1 shows an example creating
the overlay file ewf-overlay.cow using the backing file ewf-
demo.EO1.

Listing 1: Example creating a QCOW2 overlay on
top of a EWF file.

gemu-img create \

-f qcow2 \

-0 backing_file=ewf-demo.EO1,backing_fmt=ewf \
ewf-overlay.cow

To make use of the overlay file with an arbitrary emulator
(including emulators with no native QCOW?2 support) the
raw payload needs to be exposed. This can be achieved by
“fusing” the QCOW2 container to expose its raw content as
a synthetic continuous file. Read and write operations are
intercepted by the FUSE? file system layer and translated
to appropriate QCOW?2 read/write operations.

Listing 2 uses gemu-fuse to expose the raw disk image.
The resulting file raw-content/ewf-overlay.cow contains
the bit-exact copy of the original physical disk without any
additional metadata added by the EWF format or QCOW2
container and therefore can be attached directly to an emu-
lator.

Listing 2: Expose raw disk content using qemu-fuse
gemu-fuse ewf-overlay.cow raw-content/

Capturing changes at the lowest possible layer (the block
layer) has specific technical advantages compared to higher
layers (e.g. file system). First, this approach is independent
of the hardware medium (disregarding vendor-specific stor-
age areas on modern devices that have no effect on file sys-
tem access), and does not depend on any operating system
or file system encoded on the device. Second, the required
metadata is simple and relatively easy to understand; re-
construction of the file is possible even without access to the
original tools. Listing 3 shows metadata of an unmodified
overlay file, with all blocks mapped to the (original) backing
file.

Listing 3: The block mapping table before modifi-

cation of the overlay file
Offset Length Mapped to File
0 0x1£400000 O ewf -demo.EO1

Listing 4 shows metadata after modification®. Several blocks
have been changed on the disk and are now mapped to the
overlay file.

Listing 4: An excerpt from the block mapping table
after modification of the overlay file

iFUSE: Filesystem in
sourceforge.net/

°In this case a MS-DOS 6.2 system has been booted and a
directory has been created on the disk

Userspace, http://fuse.

Offset Length Mapping File

0 0x10000 0x60000 ewf-overlay.cow
0x10000 0x10000 0x10000 ewf -demo.EO1
0x20000 0x10000 0x70000 ewf-overlay.cow
0x30000 0x10000 0x30000 ewf -demo.EO1
0x40000 0x10000 0x50000 ewf -overlay.cow
0x50000 0x620000 0x50000 ewf -demo.EO1
0x670000 0x10000 0x80000 ewf-overlay.cow
0x680000 0x1ed80000 0x680000 ewf-demo.EO1

While critical to the implementation, these details are not
visible to the end user. The user sees only an environment
that can be navigated, modified, and otherwise interacted
with, while the underlying disk image (the preservation ob-
ject) remains unchanged.

4. USE CASES & EVALUATION

As outlined in the previous sections, we envision two ba-
sic use cases: a user browsing the file system of a forensic
disk image via a web-interface, and a user interacting with
a booted file system or secondary storage device via an em-
ulated environment rendered within a web browser.

Both approaches support interaction with forensic disk im-
ages by providing access to the underlying file system(s)
using existing open source libraries to read the contents of
the disk image format.

4.1 Using an EWF Image as Boot Disk

To evaluate the capabilities of our tools and workflow we
have chosen a real use case, demonstrating the image prepa-
ration process, i.e. a technical generalization to be used with
an appropriate emulator.

The Vilem Flusser Archive owns a personal computer as-
sociated with the production of a software titled “Flusser-
Hypertext”. This computer contains a rare working copy of
the software which is dependent on the obsolete authoring
system HyperCard. The disk image has been acquired® from
an Apple Mac Performa 630 containing a 270 MB IDE disk.
The goal was to enable web-based access to the Flusser-
Hypertext through the archive’s web site.

Using the acquired disk image directly with an emulator
failed. The original machine used a hardware-related exten-
sion (A/ROSE) that is not supported by the emulator used
and prevented the system to start properly. A simple so-
lution was to boot the system with all extensions disabled
and to delete the A/ROSE extension file from the system’s
extensions folder. The result of this process is an overlay-
file that is bootable and useable with an emulator. The
overlay’s file size is 823 KB and contains 7 changed blocks
(block size was set to 1024 bytes). However, simply booting
the (unmodified) file system results in 3 changed blocks.

4.2 Redaction for Public Access

The disk image is now fully functional in an emulation sce-
nario. However, it is not yet suitable for public access. As
sensitive private data was found on the disk image, these

5The original acquisition was performed using dd without
forensic tool support. We have reacquired the raw disk im-
age as an EWF image.

files have to be removed, and a second overlay file has to be
produced.

In case of the Flusser Mac the archive provided a list of
files that are not suitable for public access. These files have
been removed from the file system on a second overlay file,
which is now accessible through the archive’s web site’ and
citable. In general, the redacted version of the disk image
is inextricably linked to the original image, such that any
action of the redaction process can be audited.

4.3 Access using EaaS

Once an overlay file for public access has been created, it
can be published using the EaaS framework. In a typical
EaaS setup, the emulator runs either on a local computing
cluster or using a cloud computing service (such as Google
Cloud). Disk image storage, description, and publication is
managed by the respective preservation institution.

To securely publish a redacted disk image, only a standard
web server® is required. Ideally, the redacted overlay-file
points to a local backing file that is not accessible through
the web server. Properly implemented, this ensures that a
user visiting the website cannot exploit a vulnerability of the
server-side software to read data directly from the overlay
(for example, to examine blocks from the original disk image
that have been scrubbed, or files that have been “deleted”
from the image via the overlay).

The EaaS service requires a binding configuration as part
of the technical metadata, defining the data source’ to be
configured as an emulated machine’s drive. Listing 5 shows
an example of an EaaS configuration. If no redaction is
required, or the emulator access is not public, a pointer to
the EWF file (e.g. an HTTP link) in the bindings section is
sufficient.

Listing 5: Metadata defining data resources and em-
ulator medium mapping
[...]
<drive>
<data>binding: //main_hdd</data>
<iface>ide</iface>
<bus>0</bus>
<unit>0</unit>
<type>disk</type>
<boot>true</boot>
<plugged>true</plugged>
</drive>

<binding id="main_hdd">
<url>https://.../diskImage .pub</url>
<access>cow</access>

</binding>

[...]

In both cases these images can be cited (e.g. using HDL)
and functionally accessed °.

"http://www.flusser-archive.org/

8HTTP range request support is required to avoid transfer-
ring the complete disk image to the emulator’s site.
9Functional access to the Flusser ma-
chine. http://hdl.handle.net/11270/
2b87de90-37dc-4d66-a9e6-546a80b0b261

S. FUTURE WORK

Some of the uncertainty associated with handling disk im-
ages extracted from legacy media — particularly when they
contain bootable operating systems — is derived from a lack
of sufficient description of the technical environment in which
they were produced. Providing guidelines for how those
technical environments should be described is paramount in
supporting the contextualization and generalization process.
In future efforts, we intend to provide additional guidance on
factors related to both the hardware and operating system
that should (at a minimum) be recorded.

Some aspects of this process may be automated, particularly
when working with operating systems such as Windows, OS
X, and earlier version of the Macintosh operating system
that record hardware characteristics in well-documented lo-
cations.

We also plan to further explore the relationships between
EaaS and navigation of disk image file trees in a web browser
[6]. We plan to examine options for creating richer, more
unified interfaces to allow users to examine metadata re-
lated to disk images, search the contents of images prior to
accessing them directly, and browse to EaaS instances from
within existing archival access environments.

6. CONCLUSION

We have described a series of methods to provide web-based
access to disk images captured in forensic formats; through
an emulation system that can be accessed using a modern
web browser, and by browsing views of the file system di-
rectly within a webpage. These approaches address an im-
portant need among collecting institutions: allowing users
visiting their website to interact with legacy operating sys-
tems and file systems contained in disk images extracted
from legacy media, without requiring them to install soft-
ware or understand the technical details required to recreate
a functional environment.

7. REFERENCES

[1] S. L. Garfinkel. Digital media triage with bulk data
analysis and bulk extractor. Computer Security,
32(C):56-72, Feb. 2013.

[2] M. Hedstrom and C. A. Lee. Significant properties of
digital objects: definitions, applications, implications.
In Proceedings of the DLM-Forum 2002, pages 218-227.
Office for Official Publications of the European
Communities, 2002.

[3] C. A. Lee and K. Woods. Automated redaction of
private and personal data in collections: Toward
responsible stewardship of digital heritage. In
Proceedings of The Memory of the World in the Digital
Age: Digitization and Preservation, pages 298-313,
New York, NY, USA, 2012. UNESCO.

[4] J. Metz. EWF specification — Expert Witness
Compression Format specification.
https://github.com/libyal/libewf/wiki, 2006.

[5] S. Misra, C. A. Lee, and K. Woods. A Web Service for
File-Level Access to Disk Images.
http://journal.codedlib.org/articles/9773, 2014.

