
DataNet Federation Consortium

Preservation Policy ToolKit
Reagan Moore

University of North Carolina at Chapel
Hill

312 Lenoir Dr
Chapel Hill, NC 27599

919 962 9548

rwmoore@renci.org

Arcot Rajasekar
University of North Carolina at Chapel

Hill
312 Lenoir Dr

Chapel Hill, NC 27599
919 966 3611

sekar@renci.org

Hao Xu
University of North Carolina at Chapel

Hill
312 Lenoir Dr

Chapel Hill, NC 27599
919 962 9548

xuh@cs.unc.edu

ABSTRACT

The DataNet Federation Consortium uses a policy-based data

management system to apply and enforce preservation

requirements. This paper describes the Preservation Policy Toolkit

developed by the consortium. In particular, the paper describes the

infrastructure needed for preservation, presents examples of

computer actionable forms of policies, and provides a generic

template for designing actionable preservation policies.

General Terms

Preservation strategies and workflows.

Keywords

Policy-based data management, preservation policies, computer

actionable procedures.

1. INTRODUCTION
The NSF DataNet Federation Consortium (DFC) infrastructure

enables multiple Science and Engineering communities to

implement their preferred data management applications and

establish trusted research collaborations [1]. Partners within the

DFC have implemented a variety of data-centric environments

including data preservation systems (archives), data sharing

systems, data publication systems (digital libraries), data

distribution systems, and data processing systems (processing

pipelines) to serve the needs of their specific communities and

research groups. The DFC accommodates each type of data

management application by specifying a set of policies that

enforce the desired properties for that type of data management

application:

 A trusted digital archive focuses on properties related to:

authenticity; integrity; access control; chain of custody;

persistent storage; fidelity; and original arrangement.

 A data sharing environment focuses on properties related to:

unified name spaces for users, files, and collections;

metadata-based discovery; access controls; auditing;

hierarchical arrangement; and ease of access.

 A digital library focuses on: controlled name spaces for files,

collections and metadata; descriptive metadata standards;

standard data formats; multi-faceted search; and logical

collection arrangements.

 A data distribution system focuses on: fault tolerance;

automatic failover; on-demand caching; replication;

synchronization; staleness control; high availability;

streaming; and high-speed content delivery.

 A processing pipeline focuses on: controlled name spaces for

users, files, collections, and procedures; distributed service

and workflow automation; cloud computing; scheduling of

high-performance computation; third-party and licensed

service invocation; workflow reuse; repurposing of

workflows; and provenance of workflows.

Each of these types of data management applications can build

upon generic data grid infrastructure by choosing an appropriate

set of policies and procedures. The DFC uses the integrated Rule

Oriented Data System (iRODS) data grid software [2] as a

platform to implement community-specific management policies.

The policies determine when and where procedures are executed.

Policies can be automatically enforced at policy enforcement

points that are encoded in the software middleware within the

iRODS system, or policies can be executed interactively by a user

or grid administrator, or policies can be scheduled for deferred

and periodic execution. The policy enforcement points typically

control management policies. Deferred and periodic execution is

used for administrative tasks. Interactive execution is used by

users to launch remote workflows and is also used to validate

assessment criteria.

The DFC is developing toolkits for each of the data management

applications outlined above. This paper describes the Preservation

Policy Toolkit (PPTK). The PPTK can be tuned, modified or

extended by each Science and Engineering community to meet

their particular requirements. In the next section, we describe the

concepts behind the implementation of policies within iRODS,

followed by a discussion of policy templates and policy

languages, and summarize the elements in the PPTK. Several

examples of policies are provided as part of the discussion.

2. POLICY CONCEPTS IN DFC
In this paper, we discuss the preservation environment needed to

implement data management applications such as a trusted digital

archive that automates policy enforcement within cyber-

infrastructure. A preservation environment can be defined by the

set of policies and procedures that enforce the properties of

authenticity, integrity, access control, chain of custody, persistent

storage, fidelity, and original arrangement. In Figure 1, a

iPres 2015 conference proceedings will be made available under

a Creative Commons license.

With the exception of any logos, emblems, trademarks or other

nominated third-party images/text, this work is available for re-

use under a Creative Commons Attribution 3.0 unported license.

Authorship of this work must be attributed. View a copy of this

licence.

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

generalization of this approach for implementing preservation

properties is shown. Given a specific preservation purpose, an

archive can be assembled that has desired properties such as

integrity enforcement, arrangement, and access controls. The

properties themselves may have associated requirements such as

completeness (all files in the archive have the same property),

correctness (incorrect values for information properties have been

identified and isolated or eliminated), consensus (the properties

represent the combined desire of the group assembling the

archive), and consistency maintenance (the same metadata and

data format standards have been applied to all files in the archive).

Each desired property is enforced by a set of policies that

determine when and where associated procedures are executed.

Figure 1. Policy Concepts

The associated procedures are implemented as workflows

constructed by chaining basic tasks or functions (called micro-

services) that are provided in the iRODS data grid. The functions

implement basic operations such as generate a checksum, or

replicate a file, or set the data type. The results of applying the

functions are saved as persistent state information or metadata

attributes on the name spaces for files, collections, users, storage

systems, metadata, policies, and micro-services.

Consider the integrity maintenance property. In an

implementation, one may perform such integrity maintenance by

applying policies for generation of checksums and replication of

files. A checksum is used as a digital signature to verify the

fidelity and integrity of the deposited material in the archive. In

some rigorous applications, more than one type of digital

signature (using different algorithms) may need to be maintained

as part of the digital collection. Replication is enforced to recover

from disasters and failures. Periodic verification of checksums

together with management of replicas provides a means to

identify file corruption and rectify through synchronization with a

high fidelity copy. Policies are needed to set the number of

required replicas, set the verification periodicity, and define the

mode of failure recovery. Additional policies apply this state

information to enforce the integrity property when files are

ingested into the archive.

In essence, policy-based preservation systems encapsulate four

foundational concepts:

1. Purpose for creating the preservation archive expressed as

the management of a set of desired properties.

2. Consensus on preservation enforcement as a set of desired

policies.

3. Maintenance of preservation properties through a set of

required procedures.

4. Tracking of preservation state information through required

attributes assigned to the controlled name spaces for users,

files, collections, and micro-services.

3. POLICY TEMPLATES
This view of preservation as the set of properties that will be

maintained over time is consistent with the ISO 16363 standard

[3]. Each of the trustworthiness metrics expressed by the standard

can be captured in policies that are automatically enforced by the

data management environment. The PTAB ISO 16363 Metric

Knowledge Base lists a set of required supporting evidence for

each metric. For example:

“4.6.1 The repository shall comply with Access Policies.

1. Access policy for repository.

2. Collection Development Policy.

3. Definition of the Designated Community.

4. Demonstrations and discussion with relevant staff of

what occurs when a query results in 'Access Denied'.

5. Documentation that illustrates the Access Policy is

being carried out: Sign in sheets, logs of access, logs of

successful and unsuccessful access to the system, follow

up emails or help desk reports when 'access denials'

received.

6. Examples of Preservation Description Information

(PDI) that contain Access Rights information.

7. If there are access controls on private or restricted

content, then particular events when the content was

accessed by users or staff should be checked.

8. License agreements for content.

9. Mission Statement.

10. Relevant Copyright law.

11. Submission agreement(s).

12. User surveys or interviews that determine user

satisfaction with delivery of DIP’s.”

Policies can be implemented through procedures that generate the

required evidence for each metric. Policies can be created that

identify the location of the required documentation, generate

event information for each action, and log the results of all access

checks. These policies can be implemented as machine-actionable

procedures, enabling automation of preservation tasks.

A template that captures the information associated with a policy

has been published by the Research Data Alliance Practical Policy

working group [4]. In Table 1, an example is provided for

specifying policies for access controls.

The example has two sections: the set of state attributes needed to

decide when to execute the policy, and the set of state attributes

needed while executing the policy.

The template can be used to design the set of controlling policies

and execution procedures that implement the evidence specified

for each ISO 16363 metric. The template lists the policy name,

the constraints that limit application of the policy, the state

information needed to evaluate the constraints, the operations that

the policy will apply, and the persistent state information that is

needed or changed by the policy.

The constraints imposed on the policy define how the policy

should be applied. In this case, the archive may choose to enforce

access controls by the role assigned to each user (administrator,

user) or by a unique identifier for each user (account name). The

access controls may be applied at the collection level or at the

individual file level. Choosing the type of access control to

implement defines the state information that will be needed.

The operations performed for controlling access include:

 Creating identifiers for persons, collections, and files.

 Assigning roles to persons.

 Assigning access controls to collections and files (in effect a

relationship between the person identifier and the file

identifier).

 Assigning inheritance of access controls on collections (files

can inherit the access control of the collection).

 Checking access permissions on reads and for other actions

on the file.

 Verifying the set of access controls applied to files in a

collection.

Table 1. Policy Template for Access Control

Policy

type Constraint State attributes for Constraint

Access

data By role (type of person) User_ID

 Role_type per User_ID

 Role_ACL

 By ACL (read permission) User_ID

 File_name

 ACL per File_name per User_ID

Operations

State Attributes for

Operation

 Set person name User_ID

 User_name

 Set file name File_ID

 File_name

 Set role per person User_ID

 Role_type

 Set ACL on file File_ID

 User_ID

 ACL_type

 Set sticky bit on
collection Collection_name

 Sticky-bit_value

 Set access on replication File_ID

 Replica_number

 User_ID

 ACL_type

 Execution - check ACL

on read File_name

 User_ID

 ACL_type

 Verify ACLs File_ID

 Replica_number

 User_ID

 ACL_type

One can immediately notice that the evidence listed for the access

control metric in ISO 16363 needs to be augmented with policies

that are driven by the type of implementation. The preservation

environment has to map from the metric evidence specification to

the technologies that are currently available for implementation of

the archive. Depending upon the choice of technology, different

mappings will be required. For example:

 Choice of person identifier depends upon the type of

authentication system that is used (certificate authority,

LDAP directory, one-time password, ORCID).

 Choice of file identifier depends upon the type of storage

system (Unix file system, tape archive, object store) and the

object identifier (GUID, OID, handle, logical name).

 Choice of role-based or account-based access controls

depends on the type of user authentication environment.

 Choice for identification of copies of files (replicas, backups,

versions) depends upon the required persistence properties.

A second observation is that the documents specified in the audit

checklist can be supported by generic policies. Thus policies for

storing, finding, and retrieving documents can be used to archive

the collection development policy, the definition of the designated

community, examples of preservation description information

(PDI) that contain access rights information, license agreements

for content, mission statement, relevant copyright law, submission

agreement(s), and user surveys or interviews that determine user

satisfaction with delivery of DIP’s. The document attributes may

need to be organized and associated with either a user name space,

or a collection name space, or individual files.

A third observation is that sign-in sheets, logs of access, logs of

successful and unsuccessful access to the system, and follow up

emails or help desk reports when 'access denials' are received can

be supported by generic event management policies. If the

archive is able to encapsulate information about all actions that

are performed in standard events, then the events can be saved and

indexed. A generalization of this is the ability to map from:

 An action that was taken (record ingestion, user access,

archive administrator process),

 To the operation that was performed within the archive,

 To the state information change that resulted from the action.

It should then be possible to identify all interactions with the

archive and verify that the resulting operations were consistently

applied. This includes application of access controls, or

maintenance of file integrity, or creation of AIPS, or tracking of

submissions. An audit trail can be saved as the sequence of

events that changed the archive state information. The events can

be indexed and analyzed for compliance with the desired archive

properties. In addition, all changes to the preservation

environment state information can be correlated with a controlling

policy.

In summary, multiple types of policies may be needed for each

type of evidence:

1. Policies to set input parameters (environmental

variables) needed for policy execution.

2. Policies to control execution of a procedure.

3. Policies to automate execution of administrative

functions, typically performed by the archive

administrator.

4. Policies to verify compliance with the desired

preservation properties.

The policies may be run interactively by the archive administrator

(policy type 1), or enforced at a policy enforcement point within

the software (policy type 2), or executed periodically by the rule

engine (policy types 3 & 4). The policies are organized into a

preservation policy toolkit. Each community that requires

preservation can modify the policy toolkit to implement their

required preservation policies.

4. POLICY VIRTUALIZATION

The choices made today for implementing an archive will change

as better technology emerges. This raises an immediate challenge

for preservation environments. How can the same policies be

effectively applied in the future? How can the effort to migrate to

new technologies be minimized? How can federation across

multiple archive implementations be achieved? Note that

migration to new technology and federation across heterogeneous

technologies are effectively the same capability. At the point in

time when new technology is acquired, both the old technology

and the new technology will be present in the system. Records

can be migrated from the old technology to the new technology

using federation mechanisms. The ability to federate across

technology implementations is essential for continued

enforcement of preservation policies over time.

Policy-based data management systems such as data grids handle

technology evolution through use of virtualization mechanisms.

Interactions with technology are done through software

middleware that map from the desired action to the protocol

required by the technology choice. The software that does the

mapping is encapsulated in a pluggable driver, enabling the

replacement of the old technology by plugging in a driver for the

new technology. Pluggable drivers are used within the DFC for

interactions with authentication systems, storage systems,

databases, network transport, rule engines, and micro-services

(basic operations). Through plugins, a preservation environment

can interact with multiple types of systems simultaneously, and

manage migration to new technologies.

Virtualization also implements the ability to manage all of the

properties of a preservation environment independently of the

choice of technology. This includes management of the names of

the users, the names of the files, the organization of files into

collections, the provenance and descriptive metadata, the access

controls, and administrative metadata such as checksums, file size

and storage location. The information is stored as metadata in a

database.

For example, consider the addition of a file to the system. Even

though the explicit event is a simple file addition, the response of

the system may require the execution of multiple policies, with

each policy potentially executing procedures that manipulate

multiple types of objects. Policies that are executed may include:

 Authentication of the person adding the file.

 Authorization for the addition of a file.

 Evaluation of a storage quota for the storage resource.

 Creation of a persistent identifier for the file.

 Validation of the Submission Information Package against

the submission agreement.

 Logical arrangement of the file as a member of a collection

(creation of a logical file name).

 Selection of a storage resource for the physical copy of the

file.

 Creation of a physical file name on the storage resource

 Inheritance of access controls from the collection access

controls.

 Creation of a checksum.

 Creation of a persistent object (storage of the file as

received).

 Replication of the persistent object to a second storage

location.

 Assignment of a retention period for the file.

 Assignment of a disposition procedure to the file.

 Assignment of a data type to the file based on the file

extension.

 Creation of a copy with a required data format.

 Storage of system level metadata (owner name, access

controls, checksum, file size, replica location, retention

period, file type).

 Extraction and storage of descriptive metadata.

 Creation of an Archival Information Package (aggregation

of metadata with the file into a container).

 Storage of the AIP.

 Replication of the AIP.

 Generation of event information for each step of the

ingestion.

 Storage and indexing of the event information.

Policies can be defined that control each of the ingestion steps. It

is then possible to associate different ingestion steps with different

collections. Also the policies may need to evolve over time to

handle changes in technologies, or changes in management, or

changes in preservation standards. This will require support for

multiple versions of policies, with different sets of constraints

applied within each version. The policies will need to be archived

along with the records to enable a future archivist to track how

each record was controlled over time. It should be possible for a

future archivist to start with an original Submission Information

Package, apply the sequence of policies recorded in event

information, and re-generate the current Archival Information

Package.

4.1 State Information
Virtualization depends upon having a “complete” set of state

information (metadata attributes) that can be queried and

retrieved. Information is needed about the preservation

environment for each step in the file ingestion process. This

includes information about not only each record (representation

information, provenance information, description information),

but also information about the preservation environment (user

names, storage locations, policies).

Typical file system state information is listed in Table 2. The

information stored about each file is quite limited. A preservation

environment augments this information with provenance

information, representation information, description information,

Table 2. File System State Information

File Name

File Location on disk

Creation time

Modification time

File size

Access control

Locks

Soft Link

Directory

and administration information. In practice, the DFC manages

more than 330 state information attributes about both the records

and the preservation environment. Information is managed about

users, files, collections, storage resources, metadata, rules, micro-

services, quotas, system load, audit trails, and federations.

4.2 Operations
Virtualization depends upon having a complete description of all

the operations that will be performed within the preservation

environment. The operations performed upon a file system

typically consist of create, open, close, read, write, update, seek,

stat, chown, link, and unlink. Some of the operations may be

applied to a file or to a group of files. Preservation environments

require support for additional operations such as creation of

checksums, replication, migration, and format transformation.

A generic characterization of operations performed within data

management systems is needed. To base the discussion on well-

known concepts, consider the characterization of file systems

shown in Figure 2. The file system comprises an environment

that is defined by the state information maintained about each file.

Interactions with the file system consist of events that specify an

operation. Each operation manipulates a file and changes the

associated state information. Operations may require access to

state information such as file location, or file size, or file owner.

Interactions with the files are done through interactive execution

of clients, which invoke the desired operation through a system

call. This approach makes it possible to implement a standard

data management interface on different types of hardware

systems, which in turn enables the migration of files across

storage systems.

We can generalize this model of data management by introducing

policies that control the operations performed within the system.

In Figure 3, we introduce three significant changes:

1) Operations are replaced by policies.

2) Files are replaced by objects.

3) Updates on objects and on state information are

implemented as procedures.

Additional operations can be added to the system through the

creation of new procedures. The knowledge needed to manage

the procedures can be captured in policies, and the information

needed to execute the new procedures can be added as additional

metadata. This makes it possible to add operations to the

preservation environment, along with the new policies and state

information. The preservation environment can now evolve to

track changes in preservation requirements, changes in

technology, and changes in administration.

Within the DFC, procedures are implemented as workflows that

are created by composing together basic functions, called micro-

services. The DFC supports more than 300 micro-services that

implement data management operations. The micro-services can

be categorized as operations for user management, file

manipulation, collection management, metadata manipulation,

policy management, network management, messaging,

administration (setting environment variables, quotas, load

monitoring), and data grid manipulation (federation).

Micro-services can be created that support interaction with

specific types of technology. A typical example is the creation of

a micro-service that supports access to a remote service for file

conversion. The micro-service manages the interaction with the

network protocol required for communication with the remote

service. Since multiple types of technology exist today, this

requires support for versions of micro-services, as well as versions

of state information.

5. POLICY LANGUAGE
Policies within the DFC are implemented as workflows, by

chaining together micro-services. A rule engine is used to parse

each workflow, evaluate the policy constraints, invoke execution

of each micro-service, and manage errors. The workflow

language had to be Turing complete, enabling the creation of

workflows that included conditional tests and loop constructs. A

typical policy would specify a constraint as a conditional test on

system state information and session variables, generate a query

that is sent through a catalog interface to a database, loop over the

database query results, apply arithmetic operations and string

manipulation to variables, and write results to standard out for

interactive execution or to a file for storage within the data grid.

In the DFC, new policies can be added dynamically to the system

through inclusion in a rule base.

The choice of where and when to apply the policies is mediated

through the use of policy enforcement points within the data grid

software middleware. In the DFC, the locations of the original

policy enforcement points were hard-coded. Through extensions

developed by the iRODS Consortium [5], policy enforcement

Figure 2. File System Characterization

Figure 3. Policy-based Data Management

points were made pluggable. Each time a new operation is added,

pre-process and post-process policy enforcement points are added

automatically.

A consequence of the micro-service plugin extension is that now

every operation performed within the preservation environment

can be tracked, along with the corresponding change to state

information. The state changes can be saved as events that are

indexed in an external indexing system. The events can be

analyzed to verify compliance over time with the desired

properties of the preservation environment.

The design of preservation policies that will be executable in the

future is based on the assumption that the knowledge needed to

interact with technology can be encapsulated in versions of micro-

services. By invoking the current micro-service version, a policy

will remain executable. This in turn requires that the preservation

environment manage all information needed to apply the

procedure within a metadata catalog, independently of the choice

of storage technology. The catalog can then be queried to retrieve

the information needed to apply the current micro-service version.

The policy language is interpreted by the rule engine. To enable

long-term preservation, the rule engine itself had to be pluggable,

enabling the use of a new rule engine and a new rule language by

future archivists. The DFC preservation environment thus

provides multiple levels of virtualization:

 From actions requested by clients to standard operations

supported by the data grid.

 From the state information maintained by the data grid to the

information required by the selected storage technology.

 From the knowledge encapsulated in micro-services to the

execution of the standard data grid operations.

 From the standard operations supported by the data grid to

the operations provided by the selected storage technology.

 From a consensus on management decisions to choice of

policies enforced at policy enforcement points within the

data grid.

With these levels of virtualization, a preservation environment can

be created that is technology independent, enabling the

incorporation of new technologies over time while maintaining

persistent objects.

An example of the rule language is shown in Figure 5. Each

workflow operation (variable assignment, string concatenation,

foreach loop, conditional if test) is treated as a micro-service. The

rule engine parses each line in the workflow, invokes the

associated micro-service, and manages information exchanges

between micro-services through in-memory data structures. The

workflows can be distributed across multiple servers. Information

exchange between servers is mediated by packing instructions that

serialize the in-memory data structures, send the result over the

network to the next participating server, and unpack the

information into a local in-memory data structure in the remote

system.

Policies are stored at each server in a distributed rule base. This

improves performance, makes it possible to distribute the policy

enforcement across all participating storage resources, and makes

it possible to install different policy sets at each server. One

consequence is that a distributed debugger is needed to analyze

problems in distributed workflows. This capability is provided

within the DFC infrastructure through use of a messaging system.

6. PRESERVATION POLICY TOOLKIT
The DFC has developed a set of policies required for preservation.

The policies (forming a toolkit) are driven by community

requirements and represent instances of computer actionable rules

that control administrative operations. The policies are driven by

local security requirements, local storage facilities, local

authentication requirements, and local networking infrastructure.

The examples provided in this paper are intended to illustrate

some of the challenges in writing computer actionable rules. The

rules are modifiable for application in other preservation

environments.

6.1 Sample Policy: Network Firewall
Implementing policies for a preservation environment is a

complex task. A standard challenge in implementing a

preservation environment is management of network firewalls. If

an archive storage resource is located behind a firewall,

prohibiting access from external networks, then policies are

needed to manage ingestion. One approach is to implement data

staging, with records deposited into a network accessible storage

system as shown in Figure 4.

A policy running within the Staging Data Grid analyzes the

Submission Information Packages for compliance with a

submission agreement, checks for the presence of viruses, and sets

an approval flag for qualified data. A policy that runs within the

Archive Data Grid queries the external Staging Data Grid and

pulls the approved files into the archive.

A version of the staging policy that implements multiple

operational steps needed for a production environment is shown in

Figure 5. Files are copied from the staging area into an archive by

a policy running on the staging area. The rule implements the

following steps:

 Use session variables to find the data grid and account name

under which files will be accessed.

$rodsZoneClient is the name of the staging data grid.

$userNameClient is the account name on the staging data

grid.

 Create path names for the staging directory and the archive

directory.

 Get the current system time in a human readable format.

 Check whether a directory exists in the archive for storing

log files.

 Create the directory if needed.

 If the log directory cannot be created, fail with an error

message.

 Create the log file for tracking data storage operations.

 Create a query to list the files and their checksums in the

staging data grid.

 Execute the query and loop over the result set.

Figure 4. Deep Archive

Figure 4. Deep Archive

 Extract each file name and checksum value.

 Copy each file to the archive and force an overwrite of

existing files.

 Set ownership access controls on each file.

 Calculate the checksum of each file after it is moved.

 Verify the checksum is correct.

 For files moved successfully, delete the copy in the staging

area.

Variants of the rule are used to execute the rule from the archive

and pull data from the staging area, initiate the original archive,

and push data to a second archive.

Additional policies are needed to check access controls on files in

the archive, verify checksums periodically, verify presence of

required metadata, and identify file types. For policies that have

been verified to work correctly, the execution of the rule can be

automated. Rules can be run periodically, or executed at policy

enforcement points. The choice usually depends upon whether

batch processing is preferred, or whether continuous processing is

needed to manage the workload. The archive administrator has

control over the policies that are being applied.

The DFC preservation policy toolkit contains multiple policies for

preservation, which can be categorized at an abstract level as:

 Authenticity

 Integrity

 Authorization

 Chain of custody

 Persistent storage management

 Ingestion

 Dissemination

 Fidelity

 Original arrangement and

 Packaging

As was shown with the firewall maintenance policy (which is

central to ingestion and dissemination) similar integration of

operational procedures had to be done for other abstract policies.

In many instances, the technology needed to apply the rule is

implemented in an external system. The systems identified in

parentheses within the following preservation task list show

external services that have been integrated into the DFC

environment for providing preservation functionalities. The

toolkit contains several snippets of code that can be chained to

enable creation of additional policies:

 Automate application of access restrictions.

 Transform data sets to non-proprietary formats.

 Generate event preservation metadata.

 Automate enforcement of user submission agreements.

 Automate creation of checksums.

 Automate capture of description metadata.

 Automate data archiving.

 Automate de-identification of data sets (BitCurator [6]).

 Apply unique identifiers to data (Handle system [7]).

 Enforce authentication of users (InCommon [8]).

 Map metadata terms across ontologies (HIVE [9]).

 Export data in multiple formats (NCSA Polyglot [10]).

 Track usage (Databook).

 Check for viruses (ClamScan [11]).

 Control data retention period.

 Control data disposition.

 Control searches.

 Generate storage cost reports.

 Replicate datasets.

 Copy datasets.

 Synchronize datasets.

 Verify checksum.

 Verify metadata compliance.

 Verify access control against requirements.

 Verify arrangement against requirements.

 Verify format compliance (e.g. XML).

myStagingRule {
Loop over files in a staging area,

#/$rodsZoneClient/home/$userNameClient/*stage

Put all files into collection
#/*DestZone/home/$userNameClient#$rodsZoneClient/*Coll

 *Src = "/$rodsZoneClient/home/$userNameClient/*Stage";
 *Dest= "/*DestZone/home/$userNameClient"

++"#$rodsZoneClient/" ++ *Coll;

#=get current time, Timestamp is YYY-MM-DD.hh:mm:ss =====

 msiGetSystemTime(*TimeH, "human");

#=create a collection for log files if it does not exist ===========

 *LPath = "*Dest/log";

 *Query0 = select count(COLL_ID) where COLL_NAME = '*LPath';
 foreach(*Row0 in *Query0) {*Result = *Row0.COLL_ID;}

 if(*Result == "0") {

 msiCollCreate(*LPath, "0", *Status);
 if(*Status < 0) {

 writeLine("serverlog", "Could not create log collection");

 fail;
 } # end of check on status

 } # end of log collection creation

#= create file into which results will be written ===============

 *Lfile = "*LPath/Check-*TimeH";
 *Dfile = "destRescName=*Res++++forceFlag=";

 msiDataObjCreate(*Lfile, *Dfile, *L_FD);

#============ find files to stage ======================
 *Query = select DATA_NAME, DATA_CHECKSUM where

COLL_NAME = '*Src';

 foreach(*Row in *Query) {
 *File = *Row.DATA_NAME;

 *Check = *Row.DATA_CHECKSUM;

 *Src1 = *Src ++ "/" ++ *File;
 *Dest1 = *Dest ++ "/" ++ *File;

============Move file and set access permission =========

msiDataObjCopy(*Src1,*Dest1,"destRescName=*Res++++forceFlag=

", *Status);

 msiSetACL("default", "own", $userNameClient, *Dest1);
 writeLine("*Lfile", "Moved file *Src1 to *Dest1");

=========== verify checksum =========================

 msiDataObjChksum(*Dest1, "forceChksum=", *Chksum);
 if(*Check != *Chksum) {

 writeLine("*Lfile", "Checksum failed on *Dest1");

 }

===== Delete file from staging area if checksum is good ========

 else {

 msiDataObjUnlink("objPath=*Src1++++forceFlag=", *Status);
 }

 }

}
INPUT *Stage =$"stage", *Coll=$"Archive",
*DestZone=$"tempZone", *Res=$"demoResc"

OUTPUT ruleExecOut

Figure 5. Staging Policy

7. COMPARISON WITH ISO 16363
The viability of the DFC preservation approach can be evaluated

through comparison with prior preservation audit checklists.

Specifically, can each of the tasks defined in prior checklists be

turned into computer actionable rules?

An analysis of the ISO 16363 audit checklist has been done to

identify which tasks can be automated. The analysis identified

140 preservation tasks. By casting the tasks in terms of generic

operations, the number of tasks can be minimized. This requires

identifying the state information that will be needed when

applying the generic task. An example is a generic rule to print a

report. The required state information is the location of the report

(logical name) within the preservation environment.

For each task, the predominate operation has been identified,

along with the type of entity that is being manipulated. Seven

generic operations were defined:

Create, Read, Update, Delete, Copy, Move, & Execute.

The operations were applied to seven object types:

File, Metadata, Events, Policies, Procedures, Database &

Ontology.

Examples of the operations upon objects are shown in Table 3. A

representative task is selected for inclusion in the list for each

combination of operation and object. Thus the “Create” operation

can be applied to files, metadata, policies, procedures, events,

databases and ontologies. Each task actually may involve multiple

operations. Thus an integrity check will verify checksums, delete

bad copies, and replace the bad copies from a good replica.

Table 3. Computer actionable task list for ISO 16363

Operation Object Task

Copy file

Create authentic copy from master,

verify checksums

Create Database

New database from metadata in a

federated archive

Create events

Record all micro-services applied to

file, along with state information

Create file Generate AIP based on AIP template

Create metadata

Create GUID, handle and logical name

for record

Create ontology

Ontology for designated community

terms

Create policies

Set access policies from remote

federation

Create procedure Create queries on descriptive metadata

Execute procedure

Apply transformative migration on

format

Move file

Migrate records to new storage

resource

Read events

List persons who applied archival

functions, or accessed file

Read files

Verify presence of all records specified

in submission agreements

Read metadata

List all persons with access to a

collection

Read policies List rules for collection

Read procedure

Verify mechanisms for mitigating risk

of data loss

Update ontology

Remove obsolete terms, incorporate

new terms

A second observation is that multiple tasks were required for each

criterion specified in the ISO 16363 audit checklist. This raises

the question for whether it is possible to identify fundamental

criteria that reduce a task to a single operation on a single type of

object. Based on this analysis, this will be very difficult to do,

since each criterion currently accesses multiple state information

attributes to correctly apply a generic operation, interacts with

multiple file replicas, and generates multiple event notifications.

The objective of creating computer actionable policies for each

task remains a viable approach to preservation. Generic

operations can simplify the implementation of preservation tasks

while policies can manipulate the multiple objects needed to

execute the preservation tasks. This makes it possible to automate

preservation processes.

8. SUMMARY
Policy-based data management systems enable creation of

preservation environments that maintain records in their original

form (persistent objects), while managing interactions with the

changing technology in the external world. A preservation

environment enables:

 Communication with the future. Records archived today can

be retrieved by a future archivist.

 Validation of communication from the past. An archivist can

verify the set of policies that governed preservation of a

record.

 Management of new technology. A preservation

environment allows the flow of technology through the

archives while preserving the original records. As new

technology becomes available, the technology can be

incorporated into the archive without affecting the persistent

objects.

Policies are used to enforce assertions that are made about the

properties of the preservation environment. Policies are

periodically executed to verify the assertions, since storage

systems may fail, networks may fail, operators may run obsolete

procedures, and software system may malfunction. All assertions

made about a preservation environment have to be verified over

time. Automating validation of assessment criteria is essential

when making assertions such as trustworthiness of a repository.

A generic policy template can be used to define the required

policy components. Based on the policy toolkits developed within

the DFC, a generic policy template includes:

 Policy name,

 Constraints controlling policy application,

 State information evaluated by the constraints,

 Operations performed by the policy,

 State information needed for operation execution.

With this information, policies can be implemented that automate

each preservation task.

9. ACKNOWLEDGMENTS
The development of the iRODS data grid was funded by the NSF

OCI-1032732 grant, "SDCI Data Improvement: Improvement and

Sustainability of iRODS Data Grid Software for Multi-

Disciplinary Community Driven Application," (2010-2013). The

results presented in this paper were funded by the NSF

Cooperative Agreement OCI-094084, “DataNet Federation

Consortium”, (2011-2015). The iRODS Consortium developed

the pluggable architecture used by the DFC.

10. REFERENCES
[1] Moore, R., A. Rajasekar, “Reproducible Research within the

DataNet Federation Consortium”, International

Environmental Modeling and Software Society 7th

International Congress on Environmental Modeling and

Software, San Diego, California, June 2014,

http://www.iemss.org/society/index.php/iemss-2014-

proceedings.

[2] Rajasekar, A., Wan, M., Moore, R., Schroeder, W., “Micro-

Services: A Service-Oriented Paradigm for Scalable,

Distributed Data Management”, in “Data Intensive

Distributed Computing”, January 2012, ISBN13:

9781615209712, pp. 74-93.

[3] ISO 16363:2012, “Space data and information transfer

systems – Audit and certification of trustworthy digital

repositories”,

http://www.iso.org/iso/catalogue_detail.htm?csnumber=5651

0.

[4] Moore, R., R. Stotzka, C. Cacciari, P. Benedikt, “Practical

Policy Templates”, submitted to Research Data Alliance as a

deliverable of the Practical Policy Working Group, February,

2015.

[5] iRODS Consortium, http://irods.org.

[6] Lee, Christopher A., Kam Woods, Matthew Kirschenbaum,

and Alexandra Chassanoff. “From Bitstreams to Heritage:

Putting Digital Forensics into Practice in Collecting

Institutions”. White Paper. September 30, 2013.

[7] The Handle System, http://www.handle.net/index.html.

[8] InCommon, https://www.incommon.org.

[9] Helping Interdisciplinary Vocabulary Engineering,

https://code.google.com/p/hive-mrc/.

[10] NCSA Polyglot,

http://isda.ncsa.uiuc.edu/NARA/conversion.html.

[11] ClamAV, http://www.clamav.net/index.html

[12] Harvard Dataverse Network,

https://thedata.harvard.edu/dvn/.

[13] Data Observation Network for Earth,

https://www.dataone.org.

http://irods.org/
http://www.bitcurator.net/wp-content/uploads/2013/11/From-Bitstream-to-Heritage-S.pdf
http://www.bitcurator.net/wp-content/uploads/2013/11/From-Bitstream-to-Heritage-S.pdf
http://www.bitcurator.net/wp-content/uploads/2013/11/From-Bitstream-to-Heritage-S.pdf
http://www.handle.net/index.html
http://www.clamav.net/index.html
https://thedata.harvard.edu/dvn/

