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ABSTRACT

The digital preservation community has had a chequered history
in developing software tools to perform operations essential for
preserving digital data. Poor technology choices, half measures in
adopting open source approaches, insufficient engagement with
users, finite project funding and an array of other challenges have
hampered tool development. Gaps in capability are common but
even where tools have been created to take on a particular
problem, they often face patchy support and an uncertain future.
Lessons have however been learned from mistakes that have been
made in the past. User engagement and an agile development
approach can focus solutions on real problems. Adoption and
expansion of existing tools (sometimes from outside of this
community) can yield greater and more dependable results.
Focused designs can make adoption easier. Sharing the
experimentation and data behind tool development and
assessment can be as invaluable as the tools themselves. This
paper provides an outline of lessons learned from developing
digital preservation tools across JISC and EU funded digital
preservation projects, such as PLANETS and SCAPE and more
recently from agile hackathon and mashup events run by
SPRUCE.
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1. WHY CAN'T WE HAVE TOOLS

THAT JUST WORK?

At iPRES2012 Steve Knight noted dissatisfaction in our
preservation tools in a review of the previous decade of digital
preservation: “Tools like DROID and PRONOM etc. didn’t work
properly then, and they still don’t work properly now. The wish
list from this year’s Future Perfect Conference (New Zealand) did
not differ that much from the wish list four or ten years ago.” [1]
Even tools that have (at least previously) seen considerable use
within the community, such as JHOVE, are facing an uncertain
future [2]. There are an array of reasons behind this:

¢ Many community created tools have struggled to
survive once grant funding ended

e Tools from outside of the digital preservation
community have often been overlooked

e Users have had insufficient say in the focus and design
of preservation tools resulting in a mismatch between
genuine user needs and preservation capabilities

¢ Organisations have in theory adopted open source
development approaches, but this has often gone no
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further than depositing software in a code repository at
the end of a project

+  Little thought has been given to how new tools will be
integrated with existing workflows

* A lack of even basic testing has resulted in a painful
installation experience for many users

As Johan van der Knijff put it: “Why can't we have digital
preservation tools that just work?” [3]

Lessons have been learned from the last 15 years of digital
preservation research and development. Most of the unwieldy
applications developed by the PLANETS Project [4] have not
seen significant uptake, but focused preservation tools such as
Jpylyzer [5], developed by SCAPE [6], have already been adopted
by various organisations and have been embedded in workflow
tools such as Goobi [7]. Engagement with existing tools that offer
much to the preservation community, such as Apache Preflight
[8], has yielded significant improvements to the tool. Pairing
developers with practitioners in SPRUCE Mashups [9] has
highlighted the rapid progress that can be made in solving
preservation problems in even a short space of time (sometimes
resulting in new preservation tools). These new approaches
represent a sea change in the community which is beginning to
focus more on practical experimentation, to share and exchange
ideas with others using social media and to engage more readily
with existing open source projects.

2. LESSONS LEARNED IN
DEVELOPING PRESERVATION TOOLS

The poster will present the following lessons learned in
developing preservation tools, and is adapted significantly from
the SPRUCE Mashup Manifesto [10]. This in turn is based upon
experiences in exploring, and in some cases solving, over 150
specific preservation challenges [11].

e Be agile in your first steps

o Develop/prototype in short bursts, then demo and
get feedback from your practitioner/user

o Ifyou don’t achieve results within a few hours, you
are probably doing it wrong. Try a different
approach

o Get crude results quickly, perfect and polish later

o Scripting languages can be useful for delivering
quick results

¢  Re-use, don't re-invent the wheel

o Most problems have already been solved, although
often not by the preservation community
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Boxouts and examples will be used to expand on key points from
the above.



