Lessons learned in developing digital preservation tools

the right way (and the wrong way)

Paul Wheatley
Paul Wheatley Consulting Limited
Leeds
West Yorkshire
@prwheatley

paulrobertwheatley@gmail.com

ABSTRACT

The digital preservation community has had a chequered history
in developing software tools to perform operations essential for
preserving digital data. Poor technology choices, half measures in
adopting open source approaches, insufficient engagement with
users, finite project funding and an array of other challenges have
hampered tool development. Gaps in capability are common but
even where tools have been created to take on a particular
problem, they often face patchy support and an uncertain future.
Lessons have however been learned from mistakes that have been
made in the past. User engagement and an agile development
approach can focus solutions on real problems. Adoption and
expansion of existing tools (sometimes from outside of this
community) can yield greater and more dependable results.
Focused designs can make adoption easier. Sharing the
experimentation and data behind tool development and
assessment can be as invaluable as the tools themselves. This
paper provides an outline of lessons learned from developing
digital preservation tools across JISC and EU funded digital
preservation projects, such as PLANETS and SCAPE and more
recently from agile hackathon and mashup events run by
SPRUCE.

Keywords
Digital Preservation, User Requirements, Digital Preservation
Tools, Open source development

1. WHY CAN'T WE HAVE TOOLS

THAT JUST WORK?

At iPRES2012 Steve Knight noted dissatisfaction in our
preservation tools in a review of the previous decade of digital
preservation: “Tools like DROID and PRONOM etc. didn’t work
properly then, and they still don’t work properly now. The wish
list from this year’s Future Perfect Conference (New Zealand) did
not differ that much from the wish list four or ten years ago.” [1]
Even tools that have (at least previously) seen considerable use
within the community, such as JHOVE, are facing an uncertain
future [2]. There are an array of reasons behind this:

¢ Many community created tools have struggled to
survive once grant funding ended

e Tools from outside of the digital preservation
community have often been overlooked

e Users have had insufficient say in the focus and design
of preservation tools resulting in a mismatch between
genuine user needs and preservation capabilities

¢ Organisations have in theory adopted open source
development approaches, but this has often gone no

iPres 2014 conference proceedings will be made available
under a Creative Commons license. With the exception of any

logos, emblems, trademarks or other nominated third-party images/text,

this work is available for re-use under a Creative Commons
Attribution 3.0 unported license. Authorship of this work must be
attributed. View a copy of this licence.

further than depositing software in a code repository at
the end of a project

+ Little thought has been given to how new tools will be
integrated with existing workflows

* A lack of even basic testing has resulted in a painful
installation experience for many users

As Johan van der Knijff put it: “Why can't we have digital
preservation tools that just work?” [3]

Lessons have been learned from the last 15 years of digital
preservation research and development. Most of the unwieldy
applications developed by the PLANETS Project [4] have not
seen significant uptake, but focused preservation tools such as
Jpylyzer [5], developed by SCAPE [6], have already been adopted
by various organisations and have been embedded in workflow
tools such as Goobi [7]. Engagement with existing tools that offer
much to the preservation community, such as Apache Preflight
[8], has yielded significant improvements to the tool. Pairing
developers with practitioners in SPRUCE Mashups [9] has
highlighted the rapid progress that can be made in solving
preservation problems in even a short space of time (sometimes
resulting in new preservation tools). These new approaches
represent a sea change in the community which is beginning to
focus more on practical experimentation, to share and exchange
ideas with others using social media and to engage more readily
with existing open source projects.

2. LESSONS LEARNED IN
DEVELOPING PRESERVATION TOOLS

The poster will present the following lessons learned in
developing preservation tools, and is adapted significantly from
the SPRUCE Mashup Manifesto [10]. This in turn is based upon
experiences in exploring, and in some cases solving, over 150
specific preservation challenges [11].

e Be agile in your first steps

o Develop/prototype in short bursts, then demo and
get feedback from your practitioner/user

o Ifyou don’t achieve results within a few hours, you
are probably doing it wrong. Try a different
approach

o Get crude results quickly, perfect and polish later

o Scripting languages can be useful for delivering
quick results

¢ Re-use, don't re-invent the wheel

o Most problems have already been solved, although
often not by the preservation community

o Experiment with existing solutions first 3. REFERENCES

o Someone else will have experience of other tools to [1] Steve Knight quote in: Angevarre, Inge, NCDD Blog.
try. Twitter can make the connections. Check the http://www.ncdd.nl/blog/?p=3338
COPTR tools registry [12] [2] Gary McGath's blog.

o Re-use existing code before writing any of your http://fileformats.wordpress.com/2014/03/08/statejhove/
own. Existing code comes with existing users (who [3] Johan van der Knijff's blog.
test apd 'report bugs) 'and existing contributors. http://www.openplanetsfoundation.org/blogs/2014-01-31-
Exploit this where possible! why-cant-we-have-digital-preservation-tools-just-work

‘ Keep it small, keep it simple [4] Planets Project website. http://www.planets-project.eu/

o Functional preservation tools should be atomic [5] Jpylyzer, JP2 validation tool.

° Modularise in the face of growing requirements http://openplanets.github.io/jpylyzer/

o Think about how someone else will integrate your [6] Scape Project. http://www.scape-project.eu/
tool in a wor'kﬂow.' Make it easy for .P reservica, [7] Goobi, digitisation workflow management tool.
Rosetta, Archivematica and the rest to incorporate http://www.digiverso.com/en/products/goobi
your code

[8] Preflight, PDF validation library,
http://pdfbox.apache.org/cookbook/pdfavalidation.html

[9] Paul Wheatley and Maureen Pennock. Supporting practical
preservation work and making it sustainable with SPRUCE.

. Make it easy to use, build on, re-purpose and
ultimately, maintain

o Test driven development simplifies subsequent

maintenance iPRES 2013 proceedings.
o Share your source http://purl.pt/24107/1/iPres2013 PDF/Supporting

%20practical%?20preservation%20work%20and%20making
%20it%?20sustainable%20with%20SPRUCE.pdf

[10] SPRUCE Mashup Manifesto. http://wiki.opf-

° Automate your build

o Package for easy install

e Share outputs, exchange knowledge, learn from each labs.org/display/SPR/The+SPRUCE+Mashup+Manifesto
other [11] Digital Preservation and Data Curation Requirements and
e Write up your experiences and share them (sharing Solutions, http://wiki.opf-
less than successful experiences is just as valuable labs.org/display/REQ/Digital+Preservation+and+Data+Curat
as successful ones!) ion+Requirements+and+Solutions
o Publish the data you generate. This tool->this data- [12] Community Owned digital Preservation Tool Registry
>these results (COPTR), http://coptr.digipres.org/

° Shout about it, blog it, tweet it, and add a tool
registry entry to COPTR

Boxouts and examples will be used to expand on key points from
the above.

