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Abstract 
Processing information stored as data in a specific data 
format is tightly coupled with software implementations 
that handle necessary elementary processes such as read-
ing and writing. These implementations depend on spe-
cific technological environments and thus age due to 
rapid technological change. The resulting effective loss of 
information is a major problem for Digital Preservation. 
In order to provide for persistent, authentic access to 
stored information, this paper presents a logic-based ap-
proach for the formal specification of data formats. 

Introduction 
What turns data into information is the knowledge on its 
semantics, its intended meaning. If this knowledge is 
lost, so is our access to information that is contained in 
data. A good example from history was the inability to 
read ancient hieroglyphic Egyptian script for more than a 
millennium, fortunately solved by the happenstance of 
the Rosetta Stone. Only by the lucky circumstance of it 
carrying three distinct translations of a decree, it enabled 
the inference of the meaning of hieroglyphs in the early 
19th century (Solé, Valbelle, and Rendall 2002). 
For digital information, the problem of preserving the 
knowledge of its intended meaning, its data format, is a 
lot more complex. We do not have a small set of lan-
guages like hieroglyphic Egyptian with distinguishable 
symbols in use, but rather a variety of different data 
formats on binary data. Each of them defines the mean-
ing of bits and bytes essentially depending on context, so 
for accessing contained information, establishing the 
meaning of data from context needs processing. Yet for 
this processing, we depend on implementations that are 
expensive to create, do age over time and become obso-
lete due to rapid technological change.   

Research Problem 
Our central research problem is that the current state of 
specifying data format knowledge is based on semi for-
mal, textual specifications. As these documents are in-
tended for human engineers, application of this knowl-
edge to a problem inevitably depends on human labour, 

needed for developing suited implementations for a spe-
cific technological environment and purpose. 
Now, rapid technological change of environments (e.g. 
hardware, operating systems, programming languages) 
combined with a variety of processing purposes (e.g. 
reading, writing, validating, repairing, optimizing) and 
the ongoing development of data formats constantly 
retriggers the need for a new development cycle. Com-
plicating matters, reuse is often severely limited, as adap-
tation of existing source code can be next to impossible 
due to radical differences in suited implementations. 
Taking X.509 security certificates as example, develop-
ing software can result in widely different implementa-
tions for writing them on a Java mobile phone, for read-
ing them in a batch using C++ on a Linux server or for 
validating them using Assembler on an memory-
constrained embedded system. 
Developing format-compliant implementations is a 
highly complex task, yet at the same time, human engi-
neers have cognitive limits and make mistakes. The cost 
for developing an implementation, e.g. for sufficiently 
qualified labour, puts economic limits to feasibility for 
both public institutions and private companies.  
Regarding public institutions, current Digital Preserva-
tion practices such as evaluating the risk of data format 
obsolescence in regular intervals and planning for timely 
data migration tell of this problem. For private compa-
nies, there must be a commercial incentive for the devel-
opment and maintenance of products in support of a 
specific data format - the monetary value of information 
contained must match the cost associated with its imple-
mentation and support in practice. If the monetary value 
does not match its cultural or scientific value on a short 
timescale, products are discontinued or not developed, 
resulting in a loss of required processing means, the 
underlying data format knowledge and thus ultimately of 
access to contained information. 

Contribution
For Digital Preservation of information in arbitrary data 
formats, the current practice of semi-formal, textual 
specifications and the subsequently required human 
engineering effort is too expensive to guarantee long 
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term access to information, not speaking about other 
usual problems such as format-compliance of implemen-
tations and authenticity of data. 
We therefore propose the formal description of data 
formats in order to make data format knowledge ma-
chine-processable in the first place and thus enable its 
automated application in a scalable manner, e.g. for 
extracting information from formatted data or for gener-
ating skeleton source code for implementations. 
Towards that purpose, we recently published the concept 
of Bitstream Segment Graphs (BSGs) for describing the 
composition of data (Hartle et al. 2008a). In this paper, 
we build upon BSGs and contribute a logic-based ap-
proach for formal data format specification. 

Related Work 
Data formats are not only a subject in Digital Preserva-
tion, but rather a cross-cutting concern that appears in 
other disciplines of research as well: 
• In Multimedia, motivations for research on data for-

mats were the need to specify data formats for MPEG-
4, e.g. for Part 2 (Visual) (ISO 2004) on the one hand 
and the Universal Multimedia Access (UMA) vision 
(Vetro, Christopoulos, and Ebrahimi 2003) in the con-
text of MPEG-21 (ISO 2007) on the other hand, part 
of which focuses on content adaptation and filtering. 
The former led to MSDL-S (Eleftheriadis 1996) and 
its successor Flavor/XFlavor (Eleftheriadis and Hong 
2004), whereas the latter resulted in BSDL (ISO 
2008). In this domain, contributions in literature are 
basically restricted to high-level descriptions of bit-
streams. 

• Regarding Telecommunication, the main motivation 
was the need to specify an efficient representation of a 
data model in an interoperable manner. This has lead 
to the Abstract Syntax Notation One (ASN.1) (ITU-T 
1997), the generic Encoding Control Notation (ITU-T 
2002b) and specific standard encodings such as CER 
or DER (ITU-T 2002a). For arbitrary data formats that 
do not fit into these encodings, universal applicability 
is sometimes claimed for the combination of ASN.1 & 
ECN, yet such a claim has neither been proven nor 
substantiated for these two highly complex specifica-
tions. 

Other disciplines also touch upon the subject of data 
formats, e.g. the Semantic Web with the problem of 
making information accessible to machine reasoning, or 
IT Security with the problem of testing application ro-
bustness by the introduction of data errors, so-called 
fuzzing  (Miller, Fredriksen, and So 1989) 

Approach
In general, we assume a data format to define a lossless 
digital representation of some structured information for 
purposes of storage and transmission. A data format 
therefore defines a set of finite, consecutive bit se-
quences and a set of structured information. Both sets 
may be infinite in size and have a one-to-one correspon-
dence. 

We thus assume that there exists a bijective mapping 
function between both sets (for parsing and serialisation)
as well as functions for deciding the membership in 
either set. For practicability, we require that all three 
problems (bijective mapping as well as membership in 
either set) are computable and decidable, that is, there 
exists a Turing machine that always computes an answer 
to the problem and halts. 

Computational Complexity 
Bijectivity of the mapping function does not limit its 
computational complexity, as it was shown that every 
single-tape Turing machine can be converted into a logi-
cally reversible 3-tape Turing machine (Bennett 1973). 
Moreover, no general formalism can exist that exactly 
covers the set of decidable problems, as follows from the 
Halting Problem (Hopcroft and Ullman 1979). There-
fore, describing arbitrary data formats requires a formal-
ism which is equal to the Turing machine in computa-
tional power. Such a formalism inherits the Halting Prob-
lem and thus cannot guarantee decidability by itself. 

Decomposing the problem 
In order to decompose the problem of formal data format 
specification, we define a data format instance as the 
bijective mapping between a pair of elements from both 
sets. We further define a data format as a potentially 
infinite set of data format instances, with the definition 
intentionally being analogous to that of a formal lan-
guage (Mateescu and Salomaa 1997). 
We therefore decompose the problem of formal data 
format specification into the problem of describing arbi-
trary data format instances and the problem of describing 
a possibly infinite set of bijective mappings. 

Model
For the first problem, we have recently proposed a model 
for describing arbitrary data format instances using the 
Bitstream Segment Graph (Hartle et al. 2008a), which 
has also been applied for describing exploits in IT Secu-
rity (Hartle et al. 2008b). For the latter problem, we build 
upon the BSG model and propose a logic-based approach 
through fixed-point deduction of BSG instances. 

Describing arbitrary data format instances 
An abbreviated introduction into Bitstream Segment 
Graphs is given in this subsection. For a more formalized 
description, the reader is kindly referred to (Hartle et al 
2008a). 
Entities
A bitstream segment is a finite, consecutive bit sequence 
such as 01000001. A bitstream source is a defined bit-
stream segment that is to be described and which follows 
a certain data format, e.g. a specific image file or a net-
work packet. 
A bitstream transformation is a bijective mapping of 
input bitstream segments to output bitstream segments, 
limited to one of the following normalisations: 
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Bitstream segment type Used in encoding? Used in transformation? Coverage 
Generic no no (as input) 0
Primitive yes no (as input) 1
Structure no segmentation (as input) length-weighted coverage of successors 
Transcode no transformation (as input) coverage of successor 
Fragment no concatenation (as input) coverage of successor 
Composite no concatenation (as output) coverage of successor 

Table 1: Bitstream segment types. 

• the segmentation transformation that splits one input 
bitstream segment into two or more ordered output 
bitstream segments (1:n), 

start end
type
id

start end
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parameter
id

Figure 1: Visual representations: generic, structure 
and composite bitstream segments (left); fragment, 
primitive and transcode bitstream segments (right). 

• a class of block transformations which transform one 
input bitstream segment into one output bitstream 
segment (1:1), and 

• the concatenation transformation that joins two or 
more ordered input bitstream segments into one output 
bitstream segment (n:1). 

Examples for these normalised bitstream transformations 
are the segmentation of a data structure into its fields, 
block transformations such as GZIP compression, AES 
encryption or Reed-Solomon error-correction, or the 
aggregation of a fragmented multimedia stream in an 
Apple QuickTime container. Arbitrary (n:m) bitstream 
transformations can be constructed through sequential 
composition of multiple normalised transformations. A 
bitstream transformation connects input and output seg-
ments as predecessors and successors, respectively. No 
cycles may be formed through bitstream transformations 
either directly or indirectly. 
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Figure 2: Minimal example of a BSG instance. 

A bitstream encoding is a bijective mapping between a 
bitstream segment and a typed literal, representing some 
information. For example, the bit sequence 01000001
represents the number 65 for a big-endian unsigned inte-
ger encoding, whereas for an ASCII encoding, it repre-
sents the letter A.
Every bitstream segment belongs to one of 6 bitstream 
segment types, depending upon its participation in bit-
stream transformations and bitstream encodings as listed 
in Table 1. For example, it may be a structure composed 
from two or more successor bitstream segments, a primi-
tive if it represents an encoded literal, or a generic if it 
does not participate in a bitstream transformation or a 
bitstream encoding. 
The coverage of a bitstream segment is a measure in the 
range between 0 and 1 and expresses how completely a 
bitstream segment is mapped to encoded literals through 
its successor(s). It is computed depending on the bit-
stream segment type (see Table 1). For example, for a 
structure bitstream segment a with two primitive seg-
ments as successors, the coverage of a would be 1. In 
case of one primitive segment and a generic segment of 
equal length as successors, the coverage of a would be 
0.5. The coverage of a BSG instance refers to that of its 
bitstream source. 
A Bitstream Segment Graph (BSG) is now a rooted, 
acyclic graph that is defined from a bitstream source, a 
set of bitstream transformations and a set of bitstream 

encodings, where the nodes correspond to bitstream 
segments and the edges to transformations. It describes 
the composition of a bitstream source from primitive 
bitstream segment(s). For a visual representation of a 
BSG instance, bitstream segments are depicted as in 
Figure 1. 
Properties  
A bitstream segment x has a set of namespaced proper-
ties, denoted as ns:property(x,v0,…,vn). For the 
BSG model, this includes placement information such as 
an inclusive bsg:start position, a bsg:length and an 
exclusive bsg:end position, all measured in bits and 
relative to the context provided by its predecessors. For 
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example, the first successor segment of a structure seg-
ment starts at bit 0. Further properties include the bit-
stream segment bsg:type, one or more 
bsg:semantics as identifiers or a bsg:codec identi-
fier for transcode bitstream segments. For example, for 
the segments b and c in Figure 2, we can state properties 
such as bsg:start(b,0), bsg:length(c,512) or 
bsg:codec(b,GZIP).
Relations  
Between any two bitstream segments x and y, name-
spaced relations may exist, denoted as 
ns:relation(x,y,v0,…,vn). For the BSG model, this 
includes neighbourship relations between bitstream seg-
ments in a structure bitstream segment as bsg:leads
and bsg:follows, and composition relations such as 
bsg:successor and bsg:predecessor with 
bsg:firstSuccessor and bsg:lastSuccessor as 
special cases. For example, for the segments a, b and c
in Figure 2, we can state relations such as 
bsg:firstSuccessor(a,b), bsg:leads(b,c) and 
bsg:predecessor(c,a).
Using suited types of bitstream transformations and 
encodings, the composition of arbitrary data format in-
stances can be described using BSG instances. Besides 
the visual representation, we can represent a BSG in-
stance through facts regarding BSG-related properties 
and relations. 

Describing possibly infinite sets of data format 
instances
We define a potentially infinite set of bijective data for-
mat instances through the set of stable models resulting 
from a set of first-order logic rules, expressed as implica-

tions or biconditionals. For rules, predicates are used that 
refer to either deduced or computed facts. In terms of 
existing logic languages, it resembles Datalog (Ullman 
1989) extended with functions. 

Predicate Behaviour 
math:lt(?a,?b) Tests the formula ?a < ?b.
math:lte(?a,?b) Tests the formula ?a <= ?b.
math:eq(?a,?b) Tests the formula ?a = ?b.
math:product(?a,?b,?c) Computes the formula ?a * ?b = ?c if two parameters are ground and no division by 

zero occurs, and assigns the result to the third variable parameter. Tests the formula if 
all parameters are ground. 

math:sum(?a,?b,?c) Computes the formula ?a + ?b = ?c if two parameters are ground and assigns the 
result to the third variable parameter. Tests the formula if all parameters are ground. 

util:concat(?a,?b,?c) Concatenates ground strings ?a and ?b and binds the result to variable ?c. Tests 
whether the concatenation of ?a and ?b corresponds to ?c if all parameters are 
ground. 

util:sourceLength(?a,?b) Gets the length in bits of the ground file reference ?a and binds it to variable ?b. Tests 
whether file reference ?a has length ?b in bits if both are ground. 

util:skolem(?a,…,?c) Skolem function provided for existential quantification. Maps the set of ground pa-
rameters (?a, …) to a value and binds it to variable ?c. Maps a ground ?c to a set of 
values and binds them to variables (?a, …). Tests whether (?a,…) and ?c map to each 
other if all parameters are ground. 

util:value(?a,?b) Decodes the contained literal of a ground primitive bitstream segment ?a if it is 
bsg:resolved, and assigns the result to variable ?b. Tests whether the bitstream seg-
ment ?a contains the literal ?b if both parameters are ground. 

Table 2: List of computable predicates. 

Deducible predicates refer to facts that were either given 
initially or subsequently deduced through rules. They are 
not limited to BSG-related properties and relations only, 
but may also include predicates for intermittent facts 
which may be needed for deducing a BSG instance. For 
deduced predicates, the open world assumption applies, 
as a currently unknown fact may become known later. 
Computable predicates refer to facts that can be com-
puted directly (see Table 2). They handle aspects such as 
decoding the literal ?l of a primitive bitstream segment 
?x from the so-far deduced, partial BSG instance 
through bsg:value(?x,?l), or for solving the equa-
tion ?v=?u+1 through math:sum(?u,1,?v) if either 
?u or ?v are known. These predicates can choose be-
tween the open world assumption and the closed world 
assumption, as they can decide to refute facts that will 
always fail, such as math:sum(1,2,4).
Predicates have parameters that can either be ground and 
thus have a specific value, or be a variable. A mode of a 
predicate declares for each of its parameters whether it is 
ground or variable. Computable predicate may support 
arbitrary modes, e.g. allowing math:sum to compute 
math:sum(?u,4,5) as well as math:sum(1,?v,5)
and math:sum(1,4,?w), or test math:sum(1,4,5).
Using these types of predicates, we can build rules as 
implications or biconditionals. These rules can be parti-
tioned into model-specific rules that capture properties 
and relations inherited from the BSG model itself, and 
format-specific rules that represent data format knowl-
edge. For example, a BSG-specific rule is that two 
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neighbouring bitstream segments b and c share a bound-
ary, so from the facts bsg:follows(b,c) and 
bsg:end(b,512), the fact bsg:start(c,512) can be 
concluded. From the data format instance in Figure 2, we 
could assume as format-specific rule that from the facts 
bsg:source(a,…) and bsg:firstSuccessor(a,b),
the fact bsg:type(b,'bsg:transcode') follows. 
For deducing a BSG instance, initial knowledge on a 
specific bitstream source is given, such as the fact 
bsg:source(a, 'oi2n0g16.png'). Through a series 
of iterative steps, the set of rules is applied in a mono-
tone deduction process. In each step for every rule, it is 
tried to match the antecedents with previously deduced 
knowledge. If the antecedent of a rule matches, then for 
its conclusion, the computable predicates are tested and 
the deducible predicates are deduced. Should a comput-
able predicate fail in this test, the reasoning process 
aborts, as a conclusion does not hold. This allows the use 
of validation rules that assert certain properties, e.g. that 
for all bitstream segments, its respective bsg:start and 
bsg:length have to sum up to its bsg:end, which can 
be violated in case of contradictory information con-
tained in a damaged or erroneous bitstream source. When 
no new facts are deduced in a step, then a fixed point 
consisting of the deducible facts of a BSG instance is 
reached. 
If a fixed point is reached, the resulting BSG facts can 
then be translated into a BSG instance for that bitstream 
source. This requires post-processing steps such as as-
signing the generic bitstream segment type whenever no 
type was deduced for a bitstream segment. The deduction 
of a BSG instance therefore can either 
• abort with a computable predicate refuting a fact in a 

rule conclusion, indicating that a conclusion does not 
hold and thus the bitstream source does not conform to 
the specified data format, 

• reach a fixed point with a coverage x < 1, indicating 
that there are bitstream segments in this data format 
instance not specified in the set of rules, or 

• reach a fixed point with a coverage x = 1, indicating 
that this data format instance is completely covered by 
the set of rules. 

Building a set of rules as data format knowledge is typi-
cally an incremental process. It starts with the collection 
of bitstream sources for a corpus that represents a spe-
cific format, and the definition of an initial set of rules. 
This set of rules can be improved step-by-step by com-
puting the BSG instance for every bitstream source in the 
corpus and computing its coverage. One then can select 
BSG instances with a coverage x < 1 and focus on ge-
neric bitstream segments which need to be described 
further through additional rules. Actual knowledge on 
how these generic bitstream segments are actually com-
posed may come from consulting textual specifications, 
existing implementations or through try-and-error re-
verse engineering efforts. Repeating this process in-
creases the overall coverage of BSG instances in the 
corpus. For a corpus, a fitting set of rules is found if the 
coverage reaches 1 for all of its BSG instances. 

Evaluation
In order to apply our approach, we implemented a rea-
soning system in Java, defined suited interfaces for proc-
essing bitstream transformations and bitstream encod-
ings, and implemented components for handling certain 
transformations and encodings as required. 

Setup
For evaluation, we decided to describe a small subset of 
the Portable Network Graphics (PNG) image format. We 
required that of this subset, some data format instances 

# Rule 
M1 bsg:source(?a,?f) & util:sourceLength(?f,?l)  bsg:start(?a,0) & bsg:length(?a,?l) 
M2 bsg:length(?a,?l) & bsg:end(?a,?e) & math:sum(?s,?l,?e)  bsg:start(?a,?s) 
M3 bsg:start(?a,?s) & bsg:end(?a,?e) & math:sum(?s,?l,?e)  bsg:length(?a,?l) 
M4 bsg:start(?a,?s) & bsg:length(?a,?l) & math:sum(?s,?l,?e)  bsg:end(?a,?e) 
M5 bsg:start(?a,?s) & bsg:length(?a,?l) & bsg:end(?a,?e)  math:sum(?s,?l,?e) 
M6 bsg:leads(?a,?b)  bsg:follows(?b,?a) 
M7 bsg:leads(?a,?b) & bsg:end(?a,?p)  bsg:follows(?b,?a) & bsg:start(?b,?p) 
M8 bsg:firstSuccessor(?a,?b)  bsg:successor(?a,?b) 
M9 bsg:lastSuccessor(?a,?b)  bsg:successor(?a,?b) 

M10 bsg:successor(?a,?b)  bsg:predecessor(?b,?a) 
M11 bsg:successor(?a,?b) & bsg:leads(?b,?c)  bsg:successor(?a,?c) 
M12 bsg:successor(?a,?b) & bsg:follows(?b,?c)  bsg:successor(?a,?c) 
M13 bsg:firstSuccessor(?a,?b)  bsg:start(?b,0) 
M14 bsg:lastSuccessor(?a,?b) & bsg:length(?a,?c)  bsg:end(?b,?c) 
M15 bsg:lastSuccessor(?a,?b) & bsg:end(?b,?c)  bsg:length(?a,?c) 
M16 bsg:start(?a,?s) & bsg:length(?a,?l) & bsg:end(?a,?e) & bsg:type(?a,?t) 

& bsg:source(?a,?f)  bsg:resolved(?a) 
M17 bsg:successor(?a,?b) & bsg:start(?b,?s) & bsg:type(?b,?t) & bsg:resolved(?a) 

 bsg:resolved(?b) 

Table 3: List of model-specific rules.
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# Rule 
F1 bsg:source(?a,?f)  bsg:semantics(?a,'png:root') 
F2 bsg:semantics(?r,'png:root')  util:skolem('F2',?r,?s) 

& bsg:type(?r,'bsg:structure') & bsg:firstSuccessor(?r,?s) 
& bsg:semantics(?s,'png:signature') 

F3 bsg:semantics(?s,'png:signature')  util:skolem('F3',?s,?f) & bsg:leads(?s,?f) 
& bsg:semantics(?f,'png:chunk') 

F4 bsg:semantics(?c,'png:chunk')  util:skolem('F3',?c,?l) 
& bsg:firstSuccessor(?c,'png:chunk') & bsg:semantics(?l,'png:chunk-length') 

F5 bsg:semantics(?l,'png:chunk-length')  util:skolem('F5',?l,?t) & bsg:leads(?l,?t) 
& bsg:semantics(?t,'png:chunk-type') 

F6 bsg:semantics(?l,'png:chunk-length') & bsg:value(?l,0) & bsg:leads(?l, ?t) 
& bsg:successor(?ch,?l)  util:skolem('F6',?l,?t,?ch,?cr) 
& bsg:lastSuccessor(?ch,?cr) & bsg:leads(?t,?cr) 
& bsg:semantics(?cr,'png:chunk-crc') 

F7 bsg:semantics(?l,'png:chunk-length') & bsg:value(?l,?v) & math:lt(0,?v) 
& bsg:leads(?l,?t) & bsg:successor(?ch,?l) & math:product(?v,8,?lv) 
 bsg:leads(?t,?d) & bsg:leads(?d,?cr) & bsg:lastSuccessor(?ch,?cr) 

& bsg:length(?d,?lv) & bsg:semantics(?d,'png:chunk-data') 
& bsg:semantics(?cr,'png:chunk-crc') 

F8 bsg:semantics(?t,'png:signature')  bsg:type(?t,'bsg:primitive') 
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string') 
& bsg:length(?t,64) 

F9 bsg:semantics(?t,'png:chunk-length')  bsg:type(?t,'bsg:primitive') 
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint') 
& bsg:length(?t,32) 

F10 bsg:semantics(?t,'png:chunk-type')  bsg:type(?t,'bsg:primitive') 
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string') 
& bsg:length(?t,32) 

F11 bsg:semantics(?t,'png:chunk-crc')  bsg:type(?t,'bsg:primitive') 
& bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint') 
& bsg:length(?t,32) 

F12 bsg:successor(?ch,?t) & bsg:semantics(?ch,'png:chunk') 
& bsg:semantics(?t,'png:chunk-type') & bsg:value(?t,?v) 
 util:concat('png:chunk:',?v,?ct) & bsg:semantics(?ch,?ct) 

F13 bsg:successor(?r,?c) & bsg:semantics(?c,'png:chunk') & bsg:end(?c,?ce) 
& bsg:length(?r,?rl) & math:lt(?ce,?rl)  util:skolem('F13',?c,?ce,?r,?rl,?nc) 
& bsg:leads(?c,?nc) & bsg:semantics(?nc,'png:chunk') 

F14 bsg:semantics(?r,?c) & bsg:semantics(?c,'png:chunk') & bsg:end(?c,?ce) 
& bsg:length(?r,?rl) & math:eq(?ce,?rl)  bsg:lastSuccessor(?r,?c) 

Table 4: Excerpt of format-specific rules for a limited PNG subset. Due to length considerations, this list is limited to 
describing a PNG image down to the level of chunk structures.

should at least be sufficiently complex as to require all 
three types of normalised bitstream transformations 
(segmentation transformation, block transformation and 
concatenating transformation) from the BSG model. 
We found a suited subset of PNG images, namely those 
where compressed image data is stored as separate frag-
ments in so-called IDAT chunks. For building a suited  
corpus, we examined the PNG Test Suite (van Schaik 
1998) with 156 PNG images for compliance testing, 
including corrupted files and extreme variants, and se-
lected 8 images with filename pattern oi??????.png.
Regarding the granularity of description, we allowed 
primitive bitstream segments to represent arrays of en-
coded literals. Without this consideration, the decompo-
sition of arrays such as pixel data into individual pixels 
would have bloated the resulting description of a data 
format instance without substantial benefit. 
We built a fitting set of rules for our corpus, consisting 
of 17 model-specific rules (see Table 3) and 36 format-
specific rules (see Table 4 for an excerpt). 

Data format rules 
Regarding model-specific rules, we start with rules on 
placement regarding a bitstream segment. This begins 
with a rule for deducing bsg:start and bsg:length
from an initially given bsg:source (M1). If any two of 
bsg:start, bsg:length and bsg:end are given for a 
bitstream segment, the remaining fact can be deduced 
(M2-M4). Moreover, if all facts are given for a bitstream 
segment, it can be validated for ensuring consistency 
(M5). Further rules include aspects of bitstream seg-
ments in structures, such as neighbourship (M6, M7), 
successorship (M8-M12), placement (M13-M15) and 
resolvability (M16, M17), whereas the latter is necessary 
for decoding the contained literal of primitive bitstream 
segments. 
Finally, we come to format-specific rules on our PNG 
subset. We start with a rule that deduces the PNG-
specific type of 'png:root' for a bitstream source (F1). For 
such a bitstream segment, we can deduce that there exists 
a first successor bitstream segment ?s with 
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bsg:semantics(?s,'png:signature') (F2). For a 
'png:signature', there exists a following 'png:chunk' struc-
ture (F3) as shown in Figure 3, which again always be-
gins with a 'png:chunk-length' bitstream segment (F4), 
followed by a 'png:chunk-type' bitstream segment (F5). 
If the value of a 'png:chunk-length' is 0, then the 
'png:chunk-type' is followed directly by the 'png:chunk-
crc' bitstream segment as last successor of the chunk 
(F6). Otherwise, the 'png:chunk-type' bitstream segment 
is followed by a variable-length 'png:chunk-data' bit-
stream segment and again the 'png:chunk-crc' bitstream 
segment (F7). Details on bitstream segments such as 
their type, encoding and length are provided for 
'png:signature' (F8), 'png:chunk-length' (F9), 'png:chunk-
type' (F10) and 'png:chunk-crc' (F11) bitstream seg-
ments. The PNG-specific type of the chunk is deduced 
from the 'png:chunk-type' value and assigned as 
bsg:semantics to the chunk (F12). The remaining 
rules listed in Table 4 state that if there is space left after 
a chunk, there exists another one following (F13), other-
wise the chunk is the last successor of the bitstream 
source (F14). Further rules handle chunk-specific as-
pects, e.g. for the IHDR chunk which contains informa-
tion on image width and height. 

Example deduction steps 
For a given initial fact 

bsg:source('root','oi2n0g16.png')

the deduction process tries to apply all rules to deduce 
new facts. In the first step, only the rules F1 and M1 are 
applicable, which yield the following new facts: 

bsg:semantics('root','png:root') & 
bsg:start('root',0) & 
bsg:length('root',1432)

Again, the deduction process tries to apply all rules, this 
time on an increased set of facts. In step 2, the rules F2 
and M4 yield the following: 

bsg:type('root','bsg:structure') & 
bsg:firstSuccessor('root','sc1') & 
bsg:semantics('sc1','png:signature') & 
bsg:end('root',1432)

The process of deduction is repeated until either no new 
facts can be deduced, or a computable predicate refutes a 

fact in a conclusion. The resulting facts from the reached 
fixed point describe a BSG instance for the PNG image 
oi2n0g16.png, which is part of the corpus and has a cov-
erage of 1.0. 

0 256
Structure

PNG chunk

0 32
Primitive
Integer
Length

32 64
Primitive

ASCII
Type

64 224
Structure

Data

224 256
Primitive
Integer
CRC

Figure 3: BSG instance for a PNG chunk.

Result
After building a fitting set of rules with coverage of 1.0 
for our corpus, we tested the set on all remaining PNG 
images from the PNG Test Suite. We obtained a cover-
age of 1.0 for 64 images, with the remaining 89 valid 
images having an average coverage of 0.79. Three cor-
rupt images belonging to the test suite were excluded 
from the evaluation, as the fitting set of rules did not 
contain verifying rules for PNG-specific properties. 
For a fitting set of rules over the entire PNG Test Suite, 
additional rules need to be included for palette handling 
(PLTE and sPLT chunks), transparency (tRNS chunk), 
background colour (bKGD chunk), textual data (tEXt 
and zTXt chunks) and other aspects. To estimate the 
effect of adding further rules, we added two preliminary 
rules for handling PLTE chunks and re-evaluated our 
rules on the corpus. We obtained a coverage of 1.0 for 78 
images, with the remaining 75 valid images having an 
average coverage of 0.91. 
During evaluation, the deduction process computed a 
fixed point and halted on all instances. Since errors may 
be present in a set of rules preventing a fixed point to be 
reached, a primitive approach on handling the Halting 
Problem is to place a limit on the iteration steps and 
abort the deduction beyond that limit. We discovered that 
the typical number of iterative steps required for our set 
of rules to reach a fixed point on valid PNG images 
ranges from 72 up to 170 steps. In case of the image file 
oi9n2c16.png, more than 3,000 iteration steps were re-
quired, as compressed image data is present as fragments 
with a length of 8 bit, each encapsulated into a separate 
IDAT chunk. This can be considered an extreme exam-
ple, but demonstrates what is still considered legal in 
terms of the original specification. Since data format 
instances of other data formats such as Apple QuickTime 
movies have a more complex structure which requires an 
even higher number of iterations, the use of a semi-naive 
evaluation method for the deduction process as known 
from Datalog (Ullman 1989) is absolutely essential. 

Discussion 
The set of rules we tested is quite small, yet describes 
central elements of PNG files. 'Unexplained' bitstream 
segments can be readily identified due to the generic 
bitstream segment type and the coverage measure, and 
thus allow for incremental development of data format 
rules. Testing this approach, incrementally adding rules 
for PLTE chunks to describe palette information had 
been quite simple and resulted in a significant increase 
regarding the coverage of nearly all images in the PNG 
Test Suite. 
Regarding data formats in general, our approach maps 
the diversity of data formats to format-specific data for-
mat rules, bitstream transcodings and bitstream encod-
ings. We assume that some bitstream transcodings and a 
majority of bitstream encodings may be shared among 
multiple data formats. For example, PNG employs a 
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scanline transformation to increase the efficiency of a 
subsequent GZIP compression transformation; the GZIP 
compression is likely to be reusable, whereas the 
scanline transformation is highly PNG-specific. The 
bitstream encodings we encountered so far are basically 
the ASCII encoding used for PNG chunk types and a bit-
endian unsigned integer encoding used for numerical 
values, which are easily reusable, e.g. in the context of 
Apple QuickTime. 
The set of rules includes model-specific rules that vali-
date the consistency of essential model-specific proper-
ties. Due to the complexity of PNG, adding rules 
for validating all PNG-specific properties is nontrivial 
and requires specifically corrupted image files for testing 
the corresponding rules. Our tested set of rules is over-
accepting in terms of a formal language when compared 
to the PNG specification. 
We decided to use first-order predicate logic in our ap-
proach, yet it may be possible that data formats have 
rules which are more naturally expressed using frag-
ments of higher-order logics, e.g. when having to express 
rules on sets of segments. For example, when multiple 
IDAT chunks are present in an BSG instance, these have 
to be concatenated in order of their appearance, yet for-
mulating the corresponding rules was non-intuitive. We 
assume that complex data format rules will at times 
translate into specialised computable predicates and 
require larger, more complex sets of rules. 

Summary and Conclusion 
We have presented an approach for describing arbitrary 
data formats as a possibly infinite set of data format 
instances, building upon the Bitstream Segment Graph 
model. In contrast to previous related work, we can de-
scribe arbitrary data format instances down to contained 
primitives even when real-life aspects such as compres-
sion or fragmentation are present. We applied our ap-
proach to the description of a sufficiently complex subset 
of the PNG image format and were able to show that a 
quite small number of rules is capable of describing a 
significant part of PNG images. Furthermore, our ap-
proach allows the measurement on how completely a set 
of rules describes a data format instance, which supports 
the incremental development of data format rules over 
time. 
It therefore provides some means for formal specification 
of data formats, which may be of use for the specifica-
tion of new data formats and for the documentation of 
existing ones. This can especially be helpful for data 
formats which are undisclosed or which are deviations. 
For Digital Preservation, a formal data format specifica-
tion may provide for ``a last line of defense'' by allowing 
to extract contained information if a fitting set of rules 
exists. 
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