
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

California Digital Library
UC Office of the President

Peer Reviewed

Title:
Born Broken: Fonts and Information Loss in Legacy Digital Documents

Author:
Brown, Geoffrey, Indiana University
Woods, Kam, Indiana University

Publication Date:
10-05-2009

Series:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects

Publication Info:
iPRES 2009: the Sixth International Conference on Preservation of Digital Objects, California
Digital Library, UC Office of the President

Permalink:
http://www.escholarship.org/uc/item/53z897zb

Multimedia URL:
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Brown&title=Geoffrey%20Brown
%3A%20Born%20Broken%3A%20Fonts%20and%20Information%20Loss%20in%20Legacy
%20Digital%20Documents

Abstract:
For millions of legacy documents, correct rendering depends upon resources such as fonts that are
not generally embedded within the document structure. Yet there is significant risk of information
loss due to missing or incorrectly substituted fonts. In this paper we use a collection of 230,000
Word documents to assess the difficulty of matching font requirements with a database of fonts.
We describe the identifying information contained in common font formats, font requirements
stored in Word documents, the API provided by Windows to support font requests by applications,
the documented substitution algorithms used by Windows when requested fonts are not available,
and the ways in which support software might be used to control font substitution in a preservation
environment.

Supporting material:
Presentation

Copyright Information:

http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/ucop
http://www.escholarship.org/uc/search?creator=Brown%2C%20Geoffrey
http://www.escholarship.org/uc/search?creator=Woods%2C%20Kam
http://www.escholarship.org/uc/cdl_ipres09
http://www.escholarship.org/uc/item/53z897zb
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Brown&title=Geoffrey%20Brown%3A%20Born%20Broken%3A%20Fonts%20and%20Information%20Loss%20in%20Legacy%20Digital%20Documents
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Brown&title=Geoffrey%20Brown%3A%20Born%20Broken%3A%20Fonts%20and%20Information%20Loss%20in%20Legacy%20Digital%20Documents
http://www.cdlib.org/services/uc3/iPres/video.html?file=ipres/Brown&title=Geoffrey%20Brown%3A%20Born%20Broken%3A%20Fonts%20and%20Information%20Loss%20in%20Legacy%20Digital%20Documents

Proceedings

October 5-6, 2009
Mission Bay Conference Center

San Francisco, California

30

Born Broken: Fonts and Information Loss in Legacy Digital Documents

Geoffrey Brown and Kam Woods
Department of Computer Science, Indiana University

150 S. Woodlawn Ave.
Bloomington, IN 47405-7104

Abstract
For millions of legacy documents, correct rendering

depends upon resources such as fonts that are not generally
embedded within the document structure. Yet there is
significant risk of information loss due to missing or
incorrectly substituted fonts.

In this paper we use a collection of 230,000 Word
documents to assess the difficulty of matching font
requirements with a database of fonts. We describe the
identifying information contained in common font formats,
font requirements stored in Word documents, the API
provided by Windows to support font requests by
applications, the documented substitution algorithms used
by Windows when requested fonts are not available, and the
ways in which support software might be used to control
font substitution in a preservation environment.

Overview

Q. I need ‘font x’. ... Can you tell me where I can get it?
A. This is very unlikely, as there are over 100,000 digital
fonts in existence.1

Doubtless, many readers have witnessed PowerPoint
presentations where the slides were clearly missing glyphs
(visible characters) or were otherwise poorly rendered. In
most cases, this unhappy event is the direct result of
copying the presentation from the machine upon which it
was created to a machine provided for the presentation
without ensuring that the target machine has the required
fonts. The reason is not always clear to the presenter
because Microsoft Office performs font substitution
without warning.

Annoying font substitutions occur frequently. For
example, symbols such as apostrophes and quotations
are rendered with the “WP Typographic Symbol” font in
WordPerfect Office 11. When these documents are
migrated to Microsoft Word, this font dependence is
preserved, and when the documents are rendered on
machines without this font, these symbols become “A” and
“@” as in: “in the AStrategies and Assessment@
Column”.2

The degree of information loss due to substitution
depends both upon the importance of the glyphs substituted

1http://www.microsoft.com/typography/FontSearchFAQ.mspx

2http://www.wpuniverse.com/vb/showthread.php?threadid=16756

and their frequency. For example, corporate logos are often
implemented with dedicated fonts containing a single
glyph. There may be no substantive information loss from
a missing logo for most purposes. In contrast, substitution
for mathematical symbols may result in total information
loss. For example, our experimental data include 9
documents with program listings for the Texas Instruments
TI-83 series calculators rendered with the Ti83Pluspc font
which provides various mathematical symbols; these
program listings are incomprehensible when rendered
without this obscure font. This is illustrated in Figure 1.
Compounding the problem, Texas Instruments has
published a variety of calculator fonts with different
internal names and possibly incompatible glyphs.

Correctly Rendered

Default Substitution
Figure 1: T183plus font samples

In the process of preparing this paper we found several
documents with barcodes rendered using the font “Barcode
3 of 9 by request”. When rendered with font substitutions,
the bar codes of the numbers are replaced by Arabic
numerals. Thus, the substitution preserved the numeric
meaning, but not the functional ability to be scanned!
Unfortunately, there are many barcode fonts and we were
unable to find the required font; however, we were able to
find a suitable substitute and to configure Office to accept
our substitute as illustrated in Figure 2.

0260931
Default Substitution

Forced Substitution of “Code39Azalea”

Figure 2: Barcode Rendering

31

It is difficult to create portable documents that will not
suffer from font substitution when moved to another
machine. Fonts are installed on a platform by the operating
system, by applications, and by individuals. A user has no
way to distinguish between standard fonts offered in an
Office menu and those that have been installed by other
applications. For example, ESRI provides fonts with its
various GIS applications. While these are relatively
specialized applications that are unlikely to be present on
most platforms, there is nothing preventing an Office user
from utilizing the associated fonts. Furthermore, even the
set of standard fonts changes over time – the fonts installed
by Windows XP are not identical to those installed by
Vista. Because of significant differences in the machine
environments, there is a high probability that transferring a
document between machines will result in missing fonts.

A solution to the problem of missing fonts for
document preservation requires three components –
identification of missing fonts, acquisition of the fonts or
suitable substitutes, and configuring a suitable rendering
environment including all fonts or their substitutes. In this
paper we focus on the problem of font identification. The
issues we discuss include extraction of font identification
data from digital documents, the use of that information to
match against a database of known font identifiers, and
techniques for controlling font substitution.

The central analysis in this paper is based upon two
large collections of Word documents – one described in
(Reichherzer and Brown 2006) gathered using glossary
queries to Google, and the second exclusively gathered
from “.gov” sites. The second collection was created to test
an hypothesis that government documents might use more
restricted font sets; however, that did not prove to be the
case.

To test our ability to match font requirements with
font names we gathered font name information from
several major vendors and application software. Names
were extracted from fonts, from published lists of fonts,
and from tables of names provided by vendors.

While the results initially appear depressing – a
common desktop environment can correctly render around
75% of a document collection – there are indications that
with modest work the fonts required to faithfully render
92% of a collection can be readily identified. The problem
of identification is unsolvable in an absolute sense – in any
collection of documents there are likely to be required
fonts that cannot be reasonably identified. There are simply
too many fonts which have been in use and the data on font
names available from font foundries or the fonts
themselves too sparse to guarantee identification.
Furthermore, some documents may include fonts with
corrupt name information – we have seen examples of
documents with indecipherable font names.

The remainder of this paper is organized as follows.
We begin with a discussion of font formats (e.g. TrueType)
and the available font identification information. By

gathering information from fonts and font vendors, we
have created a database containing several thousand
popular fonts. We then describe the information available
in Office documents, and our use of open source libraries
to extract the names of fonts referenced by these
documents. Finally, we describe experiments to match font
names extracted from Microsoft Office documents with
names in our database.

Background

Fonts
A font consists of a set of glyphs indexed by

codepoints (integers) within one or more codepages (a
defined codepoint to a character mapping such as the latin
alphabet) along with various geometric rendering
information. Two fonts may be suitable substitutes if they
contain similar glyphs for all codepoints. While this is
frequently the case where the glyphs represent characters
from common alphabets, there are many special case of
symbolic characters (e.g. mathematical, scientific, or icons)
where substitution of glyphs from another font destroys the
underlying meaning of the document.

While there have been many font formats in use, the
two most common formats for Windows platforms are
PostScript and TrueType. There are still bitmapped fonts
distributed with Windows for MS-DOS compatibility
(FON files) which do appear to be used in some Office
files. However, other than noting that they contain name
strings that can be extracted, we do not discuss them
further.

Although PostScript fonts appear to be in the decline,
they were the dominant font format for at least a decade.
There are several PostScript font formats (e.g. types 0, 1,
and 2) but many of the differences relate to how glyphs are
defined. For font identification, the key information
provided in every PostScript font includes ASCII strings
identifying the font version, family name, font name, and
full name (Adobe Developer Connection 2009). The full
name shows the complete name of a typeface including
style and character set information, and is typically used in
font menus. The font name generally contains much of the
same information as the full name, but in a compressed
form limited to 29 characters. There are conventions for
this compression (for example a rule that reduces the
“words” to a string with 5,3 and 3 characters); however, it
can be challenging to relate the font name strings with
published lists of fonts (Microsoft 2009a).

TrueType was developed by Apple as a competitor to
PostScript fonts and was subsequently adopted by
Windows. Today, TrueType is the most common font
format for Mac OS, the XWindows platform, and
Microsoft Windows. The file format for TrueType is now
covered by the OpenType specification (which can serve as
a container for PostScript fonts). OpenType files are

32

organized as a set of tables. The most important tables for
our work are the naming tables (name) and the table (OS/2)
containing Windows metrics including the Unicode and
Windows code page ranges. The name table includes
various strings keyed by platform, encoding, language, and
name. Platforms include Windows and Macintosh.
Encodings are platform specific – on the Macintosh these
correspond to script manager codes (e.g. Roman, Japanese,
etc.). On Windows, common encodings include Unicode
UCS-2 and UCS-4.

OpenType language IDs are platform-specific, and are
used to indicate various language specific translations of
the name strings. The types of names include copyright,
font family, font subfamily, full font name, and PostScript
names. The language used in font name strings within
Office documents corresponds (where available) to the
language for the Windows platform upon which the
document was created; for example, “Arial Bold”, “Arial
Negrita”, “Arial Vet”, and “Arial Gras” are the English,
Spanish, Dutch, and French names for the same font. In
gathering font data for this paper we found that only the
most widely used fonts tend to have name strings in
multiple languages and several large foundries provided
only English names strings with the majority of their fonts.

Fonts in Windows and Word
In this paper we concentrate on the legacy Microsoft

Word binary format. While we have performed no specific
work with other formats (e.g. WordPerfect) there is good
reason to believe that the conclusions will be similar
because application programs such as Word and
WordPerfect depend upon the underlying operating system
API for access to and rendering of installed fonts. The font
information embedded in a document is ultimately based
upon the information available from the system API. Thus,
we begin with a brief examination of the Win32 font
functionality as described in the MSDN documentation
(Microsoft Developer Network 2009). A complete analysis
examining the APIs of other operating systems (e.g. for the
Macintosh) is beyond the scope of this paper.

The central data structure used by an application to
exchange font information with the Windows operating
system is the “logical font” or LOGFONT structure that is
used to describe the most significant features of a font.
Applications create LOGFONT structures to request that
Windows find a matching font and Windows enumerates
available fonts for applications by generating LOGFONT
structures. The structure provides information such as
weight, orientation, and style (e.g. script, decorative,
roman) as well as a (maximum) 32 character (Unicode or
ASCII) name for the font. The metrics provide geometric
information such as pitch and width, style information such
as italic or underlined, and information about the range and
type of the character set supported (e.g. ANSI, Symbol,
Turkish). The type information can be used to distinguish

“Raster fonts”, “Vector fonts”, “True-Type fonts”, and
“Downloadable fonts”.

Word documents store their knowledge about fonts in
a similar structure table of “font family names” (FFN),
which include the name string (from the LOGFONT
structure), a flag indicating whether the font is TrueType,
the character set, the font weight and style, PANOSE
number, and a 20-byte “font signature” (Microsoft 2009c).
The name string is either in UTF-16 or ASCII depending
upon the version of Word creating a document. The font
signature indicates the Unicode (16 bytes) and Windows
code pages (8 bytes) for which the font contains glyphs.
Similar data exist in the OS/2 metrics table for OpenType
fonts and might be useful for verifying that a font file
matches the font referenced by a Word document.

PANOSE numbers were developed in the 1980’s
(Bauermeister 1987) as a mechanism for classifying fonts
with the explicit goal of identifying good substitutes.
While TrueType fonts include PANOSE numbers, and
Word retains those numbers in its font tables, published
research suggests that PANOSE has not been widely
implemented correctly – many fonts have “default” values
(Impson 2005). Furthermore, where PANOSE is correctly
used the information is likely to be of little added value for
font identification because these fonts tend to be those
distributed by major vendors such as Microsoft for which
accurate font name data has been recorded.

In our work, we rely upon the font name strings
extracted from Office documents. While every Word
document contains a single font name table, not all fonts
listed in this table are used by the document. Furthermore,
our experience suggests that as a document evolves, Word
fails to properly delete unused entries and empty or
“garbage collect” name strings. Thus, extracting the set of
valid name strings requires walking the document
character by character.

Font Matching Experiments
In this Section we use two data sets totaling

approximately 230,000 Word documents to evaluate the
difficulty of identifying referenced fonts given a database
of font information. The primary identification technique
we utilize is based upon name matching; however, we also
evaluate the utility of the other font metrics recorded in
Word documents.

We had hoped to build a database of font information
extracted from the fonts published by the major foundries;
however, we found most foundries reluctant to provide the
requested information and the cost of purchasing fonts not
justified by this exploratory research.3 We resorted to
combining information from a variety of sources including
font files and font name information provided by several

3 We are grateful to Bitstream for providing a large collection of fonts,
FontFont and URW for providing tables of font name information.

33

Foundry

Source Data Type
Number of

Fonts
Adobe Published Table 2,374
Bitstream TrueType Fonts 1,556
FontFont Foundry Supplied Table 11,973
URW Foundry Supplied Table 2,358

Operating System
Microsoft Windows +
Office Font Files 444
Mac OS X + Office Font Files 332

Application
Adobe PostScript 3 Fonts Published List 103
Microsoft Applications Published List 537
WordPerfect TrueType Fonts 1,080

Table 1: Font Data

collections include fonts provided with various Mac OS X
and MS Windows distributions, fonts distributed with
applications such as Microsoft Office and WordPerfect,
and fonts donated by Bitstream. The font data we
collected are summarized in Table 1.

To determine the fonts used in Word documents, we
wrote a custom application based upon the open source
library libwv which is the basis for file import in
Abiword and other applications (Lachowicz 2009).
Through comparing key aspects of libwv with the
published specification, we believe libwv is relatively
correct – there are aspects of the specification that are far
from clear, and specific notes point to items requiring
further work. The libwv software provides a basic
document processing function with application-specific
callback functions. For our work, it was necessary only to
provide a function to track the fonts specified at the
beginning of a text run and a function to process each
character in a text run. For each font in the document
name table, we record both the codepoints used and the
number of characters referencing the font. Selection of the
correct font for a given character is actually done
incorrectly in libwv – the code does not implement the
“font calculation” described in Appendix B of the Word
2007 Binary File Format document (Microsoft 2009c).
We corrected this error in our work. Our code generates
reports including the active font names with the number
of codepoints and characters from each font as well as the
other font metrics recorded in the Word document.

Given the font information extracted from a
collection of Word documents and a database of font
names we can determine which extracted names exactly
match names in the database. While there appear to be
opportunities to apply various heuristics for inexact
matching (for example longest matching prefixes), our
examination of the names suggests there are many special

cases, thus we studied exact matching as a baseline. We
matched names against three distinct name sets – our
complete collection, the names extracted from an
installation of Windows XP and Office 2007, and the
single name “Times New Roman” which is the most
common font referenced in our data sets.

Our metric for each font collection is the percentage
of documents whose font requirements can be completely
met (satisfied) by that collection. We compare these
results with the percentage of “satisfied documents” given
font collections of the N most referenced fonts for all
values of N. The results for our glossary based collection
(3910 fonts) are illustrated in Figure 3 and those for the
“.gov” (1920 fonts) documents are illustrated in Figure 4.
Although the total number of referenced fonts differs, the
overall results are quite similar – roughly 31-39%
satisfied by Times New Roman, 72-79% satisfied by XP
and Office, and 90-94% satisfied by our more
comprehensive collection. Notice that in both cases the
top 100 fonts satisfy approximately 92% of the
documents.

As mentioned above, exact name matching is
probably too pessimistic. For example, we noticed many
variations on fonts including the word “Times”. Some of
this variation is due to similar fonts published by different
vendors, some is due to changes in name conventions
from the early bitmapped fonts to PostScript fonts to

Truetype, and some is due to significant differences.
The top 10 “Times” fonts and their fraction of reference
from the two document collections is illustrated in Table
2. The complete list comprises 375 fonts and 49% of all
font references. Note that the values in Table 2 are
calculated from the total number of references rather than
the percentage of documents satisfied.

34

Figure 3: Font Usage for Glossary Documents

Even if all variations on Times, after suitable
analysis, proved to be equivalent, the overall problem
isn’t significantly simplified. The extremely long tail on
font usage means achieving a 95% satisfaction level for a
document collection is tractable, achieving 99% may not
be feasible. Furthermore, our experience suggests that
finding many of the identified fonts will be quite
challenging.

Ultimately, preservation of documents will require
selection of suitable font substitutes either because a
particular font cannot be obtained or identified. Thus, we
examined other data that might aid in characterizing
suitable substitutes or in determining whether a required

Table 2: Times Variations. Percentages calculated from
number of times each font variation is encountered.

font is critical to preserving the information content of a
document.

The primary additional font metrics available from
Word documents include the font family (Roman, Swiss,
etc.) and pitch, the font weight, Panose number, and Code
sets (Unicode and Windows). The two font families that
are likely to be safely substituted are Roman and Swiss
(serif and san serif fonts respectively). It is less clear
whether Modern or Script can be substituted, and
Decorative generally cannot be substituted. As illustrated
in Table 3 and Table 4, either the font family or pitch
information has a “default” value for nearly 40% of all
referenced fonts. The font family categories are described
in (Microsoft 2009b).

Default 40%
Fixed Pitch 3%
Variable Pitch 57%

Table 3: Font Pitch

Unicode range and Codepage information can be used to
analyze font data at a finer granularity, providing a clearer
picture of why a particular font may be used in a given
document (e.g. in order to satisfy the need for particular
glyphs) and potential guidance on selection of a suitable
substitute. We intend to explore the use of such
information in future research.

Times New Roman 42%
Times 3%
CG Times 1%
Times New Roman 0.5%
Times New Roman Bold < 0.5%
Times New Roman, Bold < 0.5%
Times New (W1) < 0.5%
CG Times (W1) < 0.5%
Times New Roman PSMT < 0.5%
Times-Roman < 0.5% < 0.5%
... ...
Total (375) 49%

35

Figure 4: Font Usage for Government Documents

Default
Do not care or
don’t know 42%

Roman

Serif fonts with
variable stroke
width 28%

Swiss

San serif fonts with
variable stroke
width 21.5%

Modern
Constant stroke
width 4.5%

Script Handwriting 2%
Decorative Novelty or other 2%

Table 4: Font Family

As mentioned, many fonts are used for a single or
few glyphs. In the case of the document collections
studied, nearly 10% of all referenced fonts were never
used for more than a single glyph of these. Unfortunately,
even assuming all these fonts are known (by adding the
names to our database) doesn’t appreciably alter our
“satisfaction” rate.

Font Substitution

Locating missing fonts using name strings as a
primary identifier is challenging. While a number of
websites providing font search (one-at-a-time) based upon

large databases, they are often incomplete, inaccurate, and
cannot be automatically queried. We encountered a
variety of problems with names containing non-ASCII
characters, compressed names, variations of known
names, and rare or specialized fonts. Processing
compressed names in particular may be platform specific.
For example, the Windows fonts named “Helv” and “Tms
Rmn” in Windows 3.0 were renamed to “MS Sans Serif”
and “MS Serif”, respectively, in Windows 3.1. Modern
iterations of the Microsoft operating system maintain a
system-accessible map in the font substitution registry
subkey to correctly map these names. However, on
Macintosh platforms the proper substitutions remain
unavailable.

Font substitution in Microsoft Windows is performed
according to a “closest match” criteria calculated as a
weighted sum from a vector of information corresponding
to the LOGFONT structure. As the name suggests, this
information does not correspond to a “physical” font (e.g.
the data that defined a font installed or loaded into the
task environment) but rather a “logical” font composed of
a sequence of properties requested as a result of a user
action or application request during the loading of a
document.

When an application is tasked with displaying text in
a given font, it performs an API function call populated
with values from the LOGFONT corresponding to the
desired (logical) attributes. Windows realizes a best match

36

to the desired font by searching the installed fonts to find
one with values closest to this attribute set. As previously
noted, these attributes include font family names, font
weight, font width, and font slope. An obvious
consequence of this is that the (absolute) best match may
correspond to a font not installed on the system.

Font matching information is precalculated and
cached from existing font collections according to a
detailed algorithm designed to support efficient font
matching on request. In addition to the attributes noted
above, this process includes the generation of combined
Family and Face names, extraction and resolution of
various terms for style and weight (for example, “Bold
Face” to be treated the same as “Bold”), and the
extraction of canonical numerical representations.

Fonts are subsequently matched by location of an
exact (or longest-substring match) FontFamily name, a
matching face from the candidate face list (computed as a
weighted attribute vector based on FontStretch, FontStyle,
and FontWeight - prioritized in that order), and
localization settings.

Microsoft provides detailed information on font
matching in Windows under the Windows Presentation
Foundation (Microsoft 2009d). In some cases, a matched
font may not contain the required glyphs (for example, a
font with a Latin-only glyph-set requested to render
glyphs in an unsupported codepoint range). The Microsoft
Unicode rendering service, Uniscribe, will automatically
render the unsupported script in the appropriate fallback
font (Kaplan 2009).

In order to provide more accurate mapping from
logical to physical fonts and account for improved
rendering technologies, Microsoft introduced improved
APIs in Windows XP (moving from GDI to GDI+) and
Windows 7 (with the development of DirectWrite). As a
result, the font substitution actions performed by different
versions of Microsoft Office may be inconsistent.
Additionally, the default font substitution algorithm
implemented in GDI+ may be overridden within an
application. Because of this, it can be difficult to
accurately replicate substitution actions performed by a
proprietary application such as Microsoft Word. This can
be demonstrated via a simple experiment using fonts
provided with the operating system. If a LOGFONT
structure is populated completely with information from a
font loaded into the system font table using an API call
such as AddFontResourceEx(), and that font is then
unloaded, a subsequent call to the function CreateFont()
under Windows XP (GDI+) will frequently result in
mapping that differs from the substitution performed by
Microsoft Office.

Furthering the problem, there is not enough
information included in a legacy Word (.doc) file for any
font used to completely fill the LOGFONT structure. Font
information that is available, such as the PANOSE
number or a substitution “hint”, cannot be passed directly

to font mapping functions within GDI+. This is important
because it exposes a significant preservation issue; even
when document specifications are well documented (or
fully open), the behavior of the application most
commonly used to render those documents becomes the
defacto standard for all rendering services. If the behavior
of such an application depends on code or API functions
that are not generally exposed, the “openness” of the
format is not necessarily a guarantee of preservation-
friendliness.

David Levy notes that the severity of the risk posed
by font substitution depends on a variety of factors, that
“even in these simplest of cases, sensitivity to the
circumstances of use is crucial to determining what is to
be preserved—what counts as successful preservation”
(Levy 1998). Font selection algorithms are complex, and
the substitution actions performed may be opaque to
anyone who is not a typographer or software developer.
However, simple tools can assist the user in determining
the degree to which a rendered document is well-formed
(or exhibits information loss). In the following section, we
briefly describe a prototype to provide this service.

Discussion

We have shown that the majority of digital
documents obtained from a wide range of sources (up to
79%) can be rendered accurately using fonts appearing in
modern desktop environments such as the combination of
Microsoft Windows and Microsoft Office. With a small
amount of additional work—using information drawn
from font foundries, performing family name matches for
legacy fonts or commercial fonts for which distribution
has ceased, we can expect to increase this coverage to
92%.

This nevertheless leaves a large number of
documents unaccounted for. Microsoft’s own search
engine indexes nearly 60 million documents currently
available on the web. At this level of coverage, 1.8
million documents are guaranteed to be rendered
inconsistently on a typical workstation. For many of these
documents, the loss of information may be negligible. It is
impossible, however, to quantify this without appropriate
software tools to analyze the risk to a particular
collection.

Even with access to the full documentation for a
legacy proprietary format, replicating the behavior of the
original environment used to render that document can be
extremely difficult—or impossible—for tasks as
seemingly basic as font selection and use. While
publishers and institutional archives build support around
work-flows optimized for “born archival” documents, the
majority of the documents produced in the world today
continue to be created using proprietary office software
with font embedding disabled. With an open syntactic

37

specification for the documents, the font identification
and selection problem remains.

Automated tools to simplify the identification and
location of missing fonts in document sets can
significantly reduce the risk of information loss in an
archive. As part of our ongoing research, we are
developing tools to assist archivists in processing and
analyzing font information from large collections of
documents. Our current tool is capable of automatically
preprocessing collections of Microsoft Word documents,
identifying ranges of characters for which fonts are not
available, and rendering those ranges separately from the
remainder of the document for examination. In concert
with this tool, we have developed a plug-in for Word
which automatically locates and highlights ranges for
which fonts or characters have been substituted.

Our research demonstrates the need for simple,
effective tools to correctly identify font information and
locate missing font data in order to facilitate lossless
rendering. We show that effective rendering of
heterogeneous document collections can only occur when
supported by a database of information drawn from
multiple vendors; no existing identification technology
provides universal or even adequate coverage. Proper
archival handling of these digital objects should include
tools to rapidly and selectively present to a human
relevant document segments for quality assurance in order
to mitigate risk during subsequent archival and access
events.

References

[Adobe Developer Connection 2009] 2009. Font technical
notes. http://www.adobe.com/devnet/font

[Bauermeister 1987] Bauermeister, B. 1987. A Manual of
Comparative Typography. Van Nostrand Reinhold.

[Impson 2005] Impson, J. 2005. Evaluating the IBM and
HP/PANOSE font classification systems. Online
Information Review 29(5):14.

[Kaplan 2009] Kaplan, M. 2009. Font substitution and
linking #1. http://blogs.msdn.com/-
michkap/archive/2005/03/20/-399322.aspx

[Lachowicz 2009] Lachowicz, D. 2009. wvWare, library
for converting Word documents.
http://wvware.sourceforge.net/

[Levy 1998] Levy, D. M. 1998. Heroic measures:
reflections on the possibility and purpose of digital
preservation. In DL ’98: Proceedings of the third ACM
conference on Digital libraries, 152–161. New York, NY,
USA: ACM.

[Microsoft Developer Network 2009] 2009. DirectWrite
API Reference.
http://msdn.microsoft.com/enus/library/dd368038(VS.85).
aspx

[Microsoft 2009a] 2009a. List of fonts supplied with
Microsoft products.
http://www.microsoft.com/typography/fonts/pro-
duct.aspx?PID=1

[Microsoft 2009b] Microsoft. 2009b. LOGFONT.
http://msdn.microsoft.com/en-us/library/ms901140.aspx

[Microsoft 2009c] 2009c. Microsoft Word 2007 Binary
Format Specification.
http://download.microsoft.com/download/0/B/E/0BE8BD
D7-E5E8-422A-ABFD.../Word97-
2007BinaryFileFormat(doc)Specification.pdf

[Microsoft 2009d] 2009d. WPF font selection model.
http://blogs.msdn.com/text/attachment/2249036.ashx

[Reichherzer and Brown 2006] Reichherzer, T., and
Brown, G. 2006. Quantifying software requirements for
supporting archived office documents using emulation. In
JCDL ’06: Proceedings of the 6th ACM/IEEE-CS
joint conference on Digital libraries, 86–94. New York,
NY, USA: ACM.

