

Requirements Engineering

(An Introduction to) Requirements Engineering

Housekeeping Rules

- Please turn on your camera (if possible)
- Stay muted
- Feel free to ask questions in the chat or by raising your hand.

• Slides will be available through Moodle (for license info see last slide)

Check-in: How are you feeling today and what are your expectations on today's session?

Please go to Miro: <u>https://miro.com/app/board/uXjVKMFsPcQ=/?share_link_id=106396018858</u>

Introduction

What Is Requirements Engineering (RE)?

"The systematic and disciplined approach to the **specification and management of requirements** with the goal of **understanding** the stakeholders' **desires and needs** and **minimizing** the **risk** of delivering a system that does not meet these desires and needs."

Glinz, Martin. <u>A Glossary of Requirements Engineering Terminology</u>. Standard Glossary for the Certified Professional for Requirements Engineering (CPRE) Studies and Exam. University of Zurich, Department of Informatics. Requirements Engineering Research Group. Version 2.0.1. July 2022. © 2011 – 2020 International Requirements Engineering Board IREB e.V. and Martin Glinz

Problems when developing new systems

- Missing or unclear objectives
- High complexity of the task
- Constantly changing goals and requirements
- Poor quality of requirements

- Implementation starts too quickly
- Communication problems
 between stakeholders
- Assumption that requirements are self-evident

Why Do We Need RE?

- To lead projects to success
- To identify all relevant stakeholders
- Better understanding of requirements
- Minimize errors
- Basis for contracts, cost or effort estimate

all persons or organizations who influence a system's requirements or who are impacted by that system

"NINE RINGS FOR MORTAL MEN"

THIS ISN'T WHAT WE MEANT

ATTRATU

The Requirements Engineer – A Separate Job or a Role?

- Participation in the RE process
- Profound knowledge of RE
- Dealing properly with stakeholders requires:
 - Analytical thinking
 - Empathy
 - Communication skills
 - Conflict resolution skills
 - Moderation/Presentation skills
 - Confidence
 - Persuasiveness

System Analysis

What Is Requirements Engineering (RE)?

Elicitation

"The systematic and disciplined approach to the **specification and management of requirements** with the goal of **understanding** the stakeholders' **desires and needs** and **minimizing** the **risk** of delivering a system that does not eet these desires and needs."

Specification

Management

Glinz, Martin. <u>A Glossary of Requirements Engineering Terminology</u>. Standard Glossary for the Certified Professional for Requirements Engineering (CPRE) Studies and Exam. University of Zurich, Department of Informatics. Requirements Engineering Research Group. Version 2.0.1. July 2022. © 2011 – 2020 International Requirements Engineering Board IREB e.V. and Martin Glinz

Phases of RE

Phases of RE – 2

ELICITATION

- Identify stakeholders
- Determine desires and needs of stakeholders
- System analysis

DOCUMENTATION

 Specifying and documenting requirements in the most suitable form.

VALIDATION

- Quality assurance
 - Error detection
 - Remedying
 errors

MANAGEMENT

• Saving, changing, tracking changes, etc.

WordCloud: Were there ever any situations in your career when you had to use RE? If so, can you give us some examples?

4.5 Requirements Engineering	
Lecturer: Eva Gergely 03.05.2024 13:15-14:45 (2 UE)	
🖸 Zoom Link "Requirements Engineering" 🖋	:
Session description 🖋	:
🜐 Miro Board Mood Check-in 🖋	1
Vere there ever any situations in your career when you had to use RE? If so, can you give us some examples? 🖋	1

The process of finding, collecting and consolidating requirements

Elicitation

Categories of Requirements

• Dissatisfiers:

- MUST
- implicit (subconscious) requirements, if not implemented, increase dissatisfaction
- Satisfiers:
 - SHOULD
 - explicit requirements
- Delighters:
 - CAN
 - Implicit wishes, in many cases customer does not even realize they want it implemented

Sources of Requirements

- <u>Stakeholder</u>
 - People or organizations
- Documents:
 - Training material for the legacy system
 - Standards and norms
 - ° ...

• Systems:

• Legacy systems but also systems of competitors

Capture: Name, function, contact details, availability, relevance, area, scope of expertise, objectives and interests related to the project

Elicitation Techniques

- Creativity techniques:
 - Brainstorming, changing perspectives, ...
- Observation techniques:
 - Field observation, apprenticing, ...
- Interview techniques:
 - Questionnaires, interviews, ...
- Other techniques:
 - Workshops, mind maps, artifact-based techniques (e. g. system archeology), use cases, ...

WordCloud: What techniques do you use (if any) to gather requirements or ideas (from customers / stakeholders of all types)?

× 4.5 /	
4.5 Requirements Engineering	
Lecturer: Eva Gergely	
03.05.2024 13:15-14:45 (2 UE)	
Zoom Link "Requirements Engineering" 🖉	
Session description 🖋	
🛞 Miro Board Mood Check-in 🥒	
🛞 Were there ever any situations in your career when you had to use RE? If so, can you give us some examples? 🥖	
New What techniques do you use (if any) to gether requirements or ideas (from gustomers / stakeholders of all types)?	

Documenting requirements and creating a baseline

Documentation

Documentation

- Many ways to document your requirements
 - Important: where you store them, metadata, version control
 - Create a baseline

- Many specification levels → Decide which levels you want to cover
 - Do not mix different levels

Types of Requirements

- Functional requirements
- Quality requirements
- Constraints

Functional vs. non-functional requirements (→ concerning the development process, maintenance of or support for the system)

The ISO 9126 Software quality standard By Sae1962 - Own work, CC BY-SA 4.0, <u>https://commons.wikimedia.org/w/index.php?curid=52216180</u>

Keywords

Natural-Language-Based Documentation

Benefits	Downsides
No special skills required for reading and understanding	Different interpretations possible
Natural language is extremely expressive and flexible	Ambiguities, omissions, inconsistencies
Suitable for almost any type of requirement	

Use:

- Short and well-structured sentences
- Consistent and standardized terminology

Natural-Language-Based Documentation II

Avoid:

- Including several requirements in one sentence
- Imprecise or ambiguous terms
- Unspecific nouns
- Incomplete conditions: "The restaurant system shall display all beverages offered on the premises to a registered user over the age of 17."
- Incomplete comparisons

Use catiously:

- Passive phrases
- Universal quantifiers ("all", "always", "never", …)
- Nominalizations ("authentication")

Template-Based Documentation

Benefits	Downsides
Offers a clear, reusable structure	The template may tempt you to focus more onon the formal criteria of the templatethan on the content.
Uniform wording of the requirements	Aspects that are not included in the template may be omitted by mistake.
Improves the overall quality of our list of requirements	

For example:

- Natural language templates
- Form templates
- Document templates

Template-Based Documentation: Requirements Template

Template-Based Documentation: Requirements Template 2

Model-based Documentation

Benefits	Downsides
The relationships between requirements are easier to understand with (graphical) models than innatural language.	Keeping multiple models consistent with each otheris a challenge.
The fact that they focus on one aspect, makes it easier to understand them.	Quality requirements or constraints often cannot be expressed in models.
Modeling languages have a restricted syntax \rightarrow reduces ambiguities and omissions	Not every relevant piece of information can bebe expressed in a model.

Model-based Documentation

Prototypes

- Explorative prototypes:
 Wireframes
 - Mock-Ups
 - Native prototypes

	ge
Some text; some banner	Houptseite Meine Proben Hilfe Logout
Sie sind hier: > TextTextText > Meine Proben Probe hinzufügen	
Neue Probe hinzufüg · Hinweise zur richtigen Ausfüllung · Bevor Sie Ihre Testergebnisse einseher Probe hinzufügen Somple ID Bereits verknüpfte So	n.
Abbrechen	Hinzufügen
Zuletzt verifiziert om DD.MM.YYYY hh.mm.as	Kontaktinfo T: +43-nonnon email@univie.oc.ot

Balsamiq wireframe

Quality assurance and making sure the requirements are accepted

Validation

Validation

- Requirements should be accepted by stakeholders and meet quality standards
- Quality criteria
- Identify discrepancies, errors, shortcomings
- At minimum:
 - Adequacy
 - Comprehensibility

Quality Criteria for Requirements

- One requirement per sentence
- Short sentences
- Adequacy
- Unambiguity
- Validity
- Consistency
- Verifiability

- Realizability
- Traceability
- Completeness
- Comprehensibility
- . . .

Quality Criteria for Requirements

Content:

- Completeness
- Traceability
- Verifiability
- Consistency
- Realizability

• . . .

Documentation:

- Comprehensibility
- Unambiguity
- Validity

Alignment with stakeholder desires:

- Adequacy
- . . .

Please open the document "Requirements List" on Moodle and analyze and comment its contents!

* 4.5 <i>/</i>	
4.5 Requirements Engineering	
Lecturer: Eva Gergely	
03.05.2024 13:15-14:45 (2 UE)	
Coom Link "Requirements Engineering"	
Session description 🖋	
🛞 Miro Board Mood Check-in 🖉	
left Were there ever any situations in your career when you had to use RE? If so, can you give us some examples? 🖉	
left What techniques do you use (if any) to gather requirements or ideas (from customers / stakeholders of all types)? 🖋	
Requirements List 🖉	

Validation

- Involve stakeholders
- Prepare for and solve conflicts
- Employ validation techniques:
 - Review techniques
 - Walkthroughs
 - Inspections
 - Exploratory techniques
 - Prototyping
 - MVP

. . .

Storing, modifying and tracking changes

Management

Prioritization

- 1. Define goals
- 2. Define evaluation criteria
- 3. Create a list of stakeholders we want to involve
- 4. Select requirements for prioritization
- 5. Choose priorization technique
- 6. Prioritize!

Requirements Management

Status change \rightarrow version change

Questions?

(An Introduction to) Requirements Engineering © 2023 by Eva D. Gergely is licensed under <u>CC BY 4.0</u>, with the following exceptions: images and slides explicitly listed under a different license, memes and Canva graphics (see <u>Canva's Content Licen</u> © © ©

E RIGHTS RESERVED

Thank you for your attention!

Sources:

Pohl, K., Rupp, C. Basiswissen Requirements Engineering. Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering. Foundation Level. 3. Auflage. 2011. dpunkt. 978-3-89864-771-7 (ISBN)

Rupp, C., die SOPHISTen. Requirements-Engineering und –Management. Professionelle, iterative Anforderungsanalyse für die Praxis. 5. aktualisierte und erweiterte Auflage. 2009. Hanser, Carl. 978-3-446-41841-7 (ISBN)

Glinz, Martin. <u>A Glossary of Requirements Engineering Terminology</u>. Standard Glossary for the Certified Professional for Requirements Engineering (CPRE) Studies and Exam. University of Zurich, Department of Informatics. Requirements Engineering Research Group. Version 2.0.1. July 2022. © 2011 – 2020 International Requirements Engineering Board IREB e.V. and Martin Glinz

IREB Certified Professional for Requirements Engineering – Foundation Level – <u>Syllabus</u>. Version 3.1.0 September 1st, 2022. © International Requirements Engineering Board IREB e.V.

https://www.studocu.com/en-nz/document/auckland-university-of-technology/data-and-process-modelling/exercise-2-writing-good-requirements/7496593