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Preface

In his seminal book Infrared and Raman Spectra of Polyatomic Molecules, published in 1945, Herzberg
asserted that ‘The regular icosahedron and the regular pentagon dodecahedron belong to the point group
I,,. It is not likely that molecules of such a symmetry will ever be found.” Not yet half a century later
we now know better: in the last few years very many molecules with novel symmetries have been found
going well beyond the forty point groups or so that are usually tabulated. Not only do we now need more
point groups but we also need far more detail about the groups that we use. In the 1950s, for instance,
there was enormous confusion about the construction of eight hybrids of Doy symmetry, some people
claiming that f orbitals were necessary, a point that had to be elucidated by none less than Giulio Racah.
This is a problem that can be sorted out in five minutes, given a table of the irreducible representations
of the group where the spherical harmonic bases are properly identified, but it is not always easy, even
now, to find tables that provide quick access to, say, f orbital bases or correct symmetrized expansions
of spherical harmonics for a large number of groups. People also begin to require good sets of matrix
representations, rather than mere characters, and these are not easily available. Neither are the Clebsch—
Gordan coefficients, except for the crystallographic point groups. As regards the double groups, the
situation is even more unsatisfactory, since the available tables are often incomplete and not always
entirely reliable. If one is dealing with a group such as the double group of Dg, one often needs to be
sure that the subgroup corresponding to the double group of D3 is also properly treated, but this is not
always the case since on subduction along the double groups it is possible that the characters cease to be
constant over each class. And the question of a consistent definition of the multiplication rules in double
groups is often a sore point.

Besides all these simple and basic problems very substantial difficulties remain to the user of existing
tables. It is not always easy to identify uniquely the symmetry operations used in them, and the very
many conventions that one requires in order to obtain consistent results have often to be guessed by
working backwards from the results of the tables. As an example: the Jones faithful representation,
obtained by acting on z, y, and z with each of the symmetry operations of a group, is some times given
in order to allegedly identify uniquely the group operations and their multiplication rules. In this case,
however, we must know whether the operations are active or passive and what the meaning of z, y, and z
is. They can be the independent variables or they can be the functions z, y, and z (or, what is the same
from the point of view of the transformation rules, body-fixed unit vectors along the three orthogonal
directions of that name). We have already four possibilities and even then some further conventions might
have to be added, such as correct phases. Yet, many of the published representations do not provide any
indication at all of the conventions used.

Methods have become available in the last few years that provide consistent tables, not just for
isolated groups but also for whole group chains and we have used these methods to treat 75 point groups,
up to and including rotation axes of order ten. We have made sure that the symmetry operations are
uniquely identified, that the multiplication rules of the groups are clear and correct (which is not trivial
for the double groups), and that the matrix representations and Clebsch—-Gordan coefficients provided
are fully and explicitly defined (except that for the icosahedral groups limitations of size require the
matrix representations to be given only by generators). One unusual feature of the tables is that full
multiplication tables are given for all the point groups treated: not only will they be useful in teaching
and illustrating group theory but, after all, a group is entirely defined by its multiplication table and
it is only when this is available that no possible ambiguity can remain about the group definition and
that consistent results in all applications required can be guaranteed. Tables of symmetrized harmonics
or spin harmonics are given for all the point groups treated for all values of j, except for the cubic and
icosahedral groups where we go up to 7 = 18. Also, and most importantly, correct subduction is achieved
over as many group chains as possible, thus guaranteeing that phase factors are properly maintained.

We have ensured that absolutely all the conventions and definitions required in order to use the tables
are given in Part 1 clearly and completely (in a dictionary style, in order to facilitate rapid use). The
group-theoretical definitions given are often not the most general mathematical definitions available, but
they have been chosen so as to be reasonably self-contained for a reader without specialized knowledge
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of the subject. Clear pictures are provided that permit the identification of the symmetry operations
in each group. Likewise, pictures of molecular examples are provided for each group. Chapters 2, 11,
and 12 of Part 1 contain a large collection of group-theoretical and matrix formulae, and Chapter 2 in
particular will prove invaluable to the user of the tables to understand precisely the way in which the
various tabulated items should to be used. Part 1 also contains complete information on the structure
and properties of the point groups, including their generation. Chapter 17 contains worked-out examples
that will ensure that the reader can see in practical cases how the tables are used. No proofs are given
in Part 1 but they can normally be found in the references given at the end of each chapter; when this is
not so concise proofs are provided.

A major problem when compiling and printing tables is that of avoiding errors and misprints. We
have tried very hard to overcome this by obtaining the tables by computer, often in more than one way.
The computer output has been directly transferred into print by the use of TEX, which has thus provided
the final camera-ready copy. More details about the construction of the tables and comparisons with the
literature may be found in Chapter 1.

The completion of this book would have been impossible without the opportunity for one of us
(S. L. A.) to spend the first half of 1992 in Vienna. He wishes to express his gratitude to The Royal
Society for a grant for this purpose and to Professor A. Neckel for his kind and generous hospitality
at the Institute of Physical Chemistry of the University of Vienna. Most of all, he is deeply indebted
to Professor Peter Weinberger for finding the funds that made this visit possible, as well as for looking
after all the practical details which made his stay in Vienna as enjoyable as it was useful. We should
like to acknowledge gratefully the support of the Austrian Ministry of Sciences under Project No. GZ
49.731/2-24/91. We are also most indebted to Dr Peter Marksteiner for a critical reading of this work
and to Florian Herzig for help in preparing the index and checking some of the tables.

It would not be right to finish these acknowledgements without expressing also our warmest thanks to
our wives, Bocha and Ulli, for the gracefulness with which they accepted their roles of computer widows
during the long years when this book was being prepared.

Ozford and Vienna S. L. A. and P. H.
October 1993

Note added in the Second Edition. Ten errata that have been found over the years in the previous printing
have been corrected in this edition. We are grateful to Dr Nikolaos P. Konstantinidis for pointing out to us
some errors in the tables of the icosahedral group I,. The digital version of this book was made possible
thanks to the Phaidra Project of the University of Vienna. The digitalization process was conducted as
part of the scheme of “E-Books on Demand”. We thank the University Library of Vienna, in particular
Dr Susanne Blumesberger, for their generous help. We are also grateful to Dr Peter Marksteiner of the
Vienna University Computer Center for his kind help and advice.

Ozford and Vienna S. L. A. and P. H.
September 2011

vi



Contents

How to use this book. Notation
1 Table numbering and general cross-referencing
Cross-references on left margins of displayed lines
Literature references
2 Symbols used

Part 1. Introduction to the tables

Introduction
1 Comparison with other tables
2 Construction of the present tables

Basic group theory: definitions and formulae
1 Basic group definitions
Group properties (postulates)
Group presentations
Group definitions
Group products
2 Operators
Configuration-space operators
Function-space operators
3 Vector (ordinary) representations
Definition and properties
Bases of the representations; representations
Similarity and unitary transformation of representations
Characters
Irreducible representations and their properties
4 Projection operators
Properties of the projection operators
Projection operator over a representation
5 Representation reduction
Notation used in this book for the indices
Representation reduction by projection operators
Representation reduction by the internal method
6 Direct products
Representations of direct-product groups
Direct product of two representations of the same group
Symmetrized and antisymmetrized products of the same representation
7 Clebsch—Gordan coefficients
Notation
Definition of the Clebsch—Gordan coefficients
Notation for the Clebsch—Gordan matrix
The Clebsch—Gordan matrix
8 Matrix elements and selection rules
9 The Wigner-Eckart theorem
10 Subduced and induced representations
Subduced representations (descent of symmetry)
Induced representations
Bibliographical note

NN = ==

O © © © ~N

10
10
11
11
11
12
13
13
13
14
14
14
14
15
15
16
16
16
16
17
17
17
17
17
18
18
19
19
19
19
19

vii



CONTENTS

3 Parametrization of symmetry operations

1 Axes and general definitions

2 Parametrization of proper rotations
Euler angles
Angle and axis of rotation

Rules for choosing a set of poles as used in the tables

The parameters ¢, n, and ¢n

Quaternion (Euler-Rodrigues) parameters A, A

Cayley—Klein parameters
Parametrization of improper operations
Parametrization of double-group operations
Calculation of the Euler angles

SO W

Bibliographical note

4  Symmetry operations: notation and properties

1 Key to the symbols for symmetry operations
Basic notation
Embellishments, subscripts, and superscripts
2 Special rotations and rotoreflections
3 Commutation of symmetry operations
4 Special relations for symmetry operations

5 Notation for point groups, single and double

Cyclic, dihedral, and related groups

Cubic groups

Icosahedral groups

Double groups

The Hermann—Mauguin or international notation
Bibliographical note

T W N~

6 Derivation of the proper and improper point groups

7 Direct product, semidirect product and coset expansion forms of the point groups

1 Definitions for proper point groups

2 Derivation of the proper point groups

3 Description of the proper point groups
Cyclic groups C,, (order n > 2)
Dihedral groups D,, (order 2n, n > 2)
Tetrahedral group T (order 12)
Octahedral group O (order 24)
Icosahedral group I (order 60)

4 Tmproper groups: general structure

5 Improper groups with inversion
Generated from cyclic groups C,,
Generated from dihedral groups D,,
Generated from the cubic groups O, T
Generated from the icosahedral group I

6 Improper groups without inversion
Generated from cyclic groups C,,
Generated from dihedral groups D,,
Generated from the cubic groups O, T
Generated from the icosahedral group I

7 Summary. The point-group structure

Bibliographical note

8 The crystallographic point groups

9 Group chains

1 Definitions and structure of the tables
Possible difficulties in group chains, for G D H
Construction of the tables

Calculation of the angle and axis of rotation from the Euler angles

20
20
20
20
20
21
21
22
22
22
23
23
24
24

25
25
25
25
26
26
27

28
28
28
29
29
29
29

30
30
31
32
32
32
32
32
33
33
33
33
34
34
34
34
34
34
35
35
35
36

37
40

41
41
41
41

viii



CONTENTS

Description of the group-chain graphs
An index of the groups in the graphs
Examples

The graphs

T W N

10 Double groups. Spinor and projective representations

1 The double group
Definitions
Class structure (Opechowski’s theorem)
Irreducible representations

2 Projective representations
Motivation
Definitions
Properties

Bibliographical note

11  The matrices of SU(2) and SU’(2)

1 Definitions

2 Form of the matrices

3 Relation between SU(2) and SU’(2) to the rotation group
Definitions
Relation between SO(3) and SU(2)
Relation between O(3), SU(2), and SU’(2)
The bilateral-binary rotation matrices
The Pauli matrices

Bibliographical note

12 The continuous groups. Rotations, their matrices, and the irreducible
representations of O(3)

1 The continuous groups

2 Action of a rotation on a vector

3 Rotation matrices
Notation
The matrices

4 The irreducible representations of O(3)
Basis and form of the representation
Improper rotations
Special cases
The characters

Bibliographical note

13 Bases: spherical harmonics, spinors, cartesian tensors, and the functions s, p, d, f
1 Integral angular momentum: the spherical harmonics
Half-integral angular momentum: spinors
Higher order spinors: spin harmonics
Relation between the bases of SO(3) and those of O(3)
Cartesian tensors
5 The s, p, d, and f functions
Bibliographical note

= w

14 Notation for the irreducible representations
1 The basic symbols
2 Embellishments
3 Lower-case symbols

15  Stereographic projections and three-dimensional drawings of point groups
1 Key to the symbols for the stereographic projections
2 Key to the symbols for the three-dimensional drawings
Bibliographical note

42
42
44
44

51
51
51
51
52
52
52
53
53
53

54
54
54
54
54
54
54
55
55
55

56
56
56
56
56
56
o7
57
58
58
58
58

59
59
59
60
60
61
62
62

63
63
63
64

65
65
66
66

ix



CONTENTS

16 How to use the tables

10

11

General instructions
Description of the tables
Subgroup elements
Parameters
Notation for the headers of T n.1
Instructions
Multiplication table
Notation for the headers of T n.2
Instructions B
Example. Obtention of the multiplication table for D4
Factor table
Notation for the headers of T n.3
Instructions
Character table
Obtention of the character table for the double group

Example. Obtention of the character table for ]52
Time reversal: column headed ‘7’ in the tables
Cartesian tensors. The s, p, d, and f functions
The cartesian tensors (up to and including rank 3)
The s, p, d, and f functions
Example. Cartesian tensors and s, p, d, and f functions for Dg
Symmetrized bases
General notes
The cyclic, dihedral, and related groups
The cubic and icosahedral groups
Matrix representations
Notation for the headers of T n.7, and for its first row
Vector representations
Double-group representations
Projective representations (full table, including vector representations)
Examples. Representations of D3
Icosahedral group I
Direct product of representations
Notation for the headers of T n.8, and for its first column
Use of the table
Example. Direct products for representations of Dg;y,
Subduction (descent of symmetry)
Example. Subgroups D5 of O
Subduction from O(3)
Example. Subduction from O(3) to Cap,
Clebsch—Gordan coefficients
Notation for the headers of T n.11
Notation required to use the tables
Description of the tables
Example. Coupling of the representations £/, and Es /5 of Dg
Bibliographical note

17 Problems

0O Ui Wi

Cross-references

Multiplication rules

The regular representation

Transformation of the components of a vector

A rotation acting on the function space

The faithful (Jones) representation

Hybrids: general form

Reduction of a representation by the internal method
Cubic hybrids

67
67
67
68
68
68
68
69
69
69
69
70
70
70
71
71

71
71
72
72
72
73
74
74
74
I0)
7
7
78
78
79
79
80
81
81
81
81
82
82
82
83
83
83
84
84
84
85

86
86
86
87
87
88
88
88
89
89




CONTENTS

9 Eight equivalent hybrids not requiring f orbitals 90
10 Hybrids: their full expression 91
11 Symmetrized molecular orbitals 91

The symmetry group 91

How to find the irreducible representations that appear in the molecular orbitals 92

Use of the projection operator 92

The symmetrized functions (bases) 92

The full symmetry of the molecular orbitals in Dgp 93
12 Symmetrized molecular orbitals: projecting over the representations 93
13 A transition-metal complex 94
14 Use of the projection operator on a direct product 95
15 Selection rules 95
16 The form of the secular determinant 96
17 Normal coordinates 96
18 Infrared and Raman activity of normal vibrations 98
19 Overtones and combination frequencies 98
20 Normal vibrations in methane 99
21 Jahn—Teller effect 100
22 Electronic states in an octahedral complex 100
23 Splitting of a doublet in a magnetic field 100
24 Subduction (descent of symmetry) 100
25 Double group: term splitting 100

Double-group method 101

Projective-representation method 102
26 A crystal field 102
27 Time reversal 103
28 Vector coupling 103

Part 2. The tables

The proper cyclic groups C,, 107
T 1 C 108 T 2 C, 110
T 3 Cs3 112 T 4 C, 114
T 5 Cj 116 T 6 Cq 119
T 7 Cy 122 T 8 Cg 125
T 9 Cy 128 T 10 Cyo 132
The improper cyclic groups C; and C; 137
T11 C; 138 T12 C; 140
The improper cyclic groups S, 143
T 13 Sy 144 T 14 Sg 146
T 15 Sg 149 T 16 Sy 152
T 17 Sy, 156 T 18 Sy4 161
T 19 Sy 166 T 20 Sig 173
T 21 Sy 181
The dihedral groups Dy, 193
T 22 Do 194 T 23 Ds 196
T24 Dy 199 T 25 Ds 203
T 26 Dg 207 T 27 Dr 213
T 28 Dg 220 T 29 Dy 227
T 30 Dy 235
The groups D,,;, 245
T 31 Doy, 246 T 32 D3y, 250
T 33 Dy 256 T 34 Dsp 263
T 35 Degp 273 T 36 D7y 284
T 37 Dy, 304 T 38 Doy, 314

T 39 Dion 343 T 40 Doon 357

xi



The groups D, 4

T 41
T 43
T 45
T 47
T 49

Dag
D4d
Dgq
Dgq
Dioa

The groups Cyy

T 50
T 52
T 54
T 56
T 58

CQ'U
C4v
CGv
CSv
Ciow

The groups C,,,

T 60
T 62
T 64
T 66
T 68

Coan
Cun
Cen
Csn,
Cion

The cubic groups

T 69
T 71
T 73

(0]
Oy,
Ty

The icosahedral groups

T 74

References

Index

I

366
375
388
413
448

482
489
497
507
519

532
537
545
556
570

580
595
637

642

CONTENTS

T 42
T 44
T 46
T 48

T 51
T 53
T 55
T 57
T 59

T 61
T 63
T 65
T 67

T 70
T 72

T 75

D3q
Dsq

Dyq

C3U
C5v

CQU
Coov

Csy,
Csp,
Crn
Con

Th

I,

370
382
404
436

484
492
501
510
523

5934
541
550
562

590
632

659

365

481

531

979

641

699
701

xii



0

How to use this book. Notation

This book is divided in two parts. Part 1 is an introduction to the tables in 17 chapters. Part 2 contains
the main body of the tables.

Chapters 1 to 15 of Part 1 contain concise definitions of all the properties tabulated in the tables plus
some useful definitions and formulae related to point groups.

Chapter 16 of Part 1, How to use the tables, contains a statement of the notation used in each
table, an explanation of the disposition of each table, and examples of its use. (Further examples of the
use of the tables may be found in the Problems in Chapter 17.) Each table contains a reference to the
appropriate section of Chapter 16.

The page number given at the heading of the tables for each point group (box at the top of the page)
is a reference to the key for: (i) reading that heading; (ii) reading the sub-sections 1 to 5 (or 1 to 6) that
follow that heading; (iii) using the footer at the bottom of each page of the tables.

All sections and page numbers in the headings of each sub-table for a point group refer to the place
in Chapter 16 where full instructions for the use of that sub-table are given.

1 Table numbering and general cross-referencing

Table m.j A table in Chapter m, of Part 1. The digit j runs serially through the chapter.
The chapter number is dropped in cross-references within the same chapter.

Fig. m.j A figure in Chapter m, of Part 1. The digit j runs serially through the chapter.
The chapter number is dropped in cross-references within the same chapter.

T n.i A table in Part 2. The first number, n, in bold, individualizes the point group
and runs from 1 to 75 in a specific order used in this book (see the Contents).
The second number refers to the particular table (characters, bases, etc.).

Fn A figure in Part 2. The number n, in bold, individualizes the point group and
runs from 1 to 75 in the specific order used in this book.

‘Equations’ Displayed formulae, definitions, enunciations of theorems, comments, etc., are
most often numbered on the right-hand side of the material in question. For
brevity, all such material, when used in a cross-reference, is called an ‘equation’
here, and sometimes also in the body of the book.

(m.i) In cross-references outside Chapter m, equation ¢ of Chapter m. The number @
runs serially through the chapter and the chapter number is dropped within a
chapter.

(L m.i), (R m.q) Left and right-hand sides, respectively of equation (m.7).

& m—i Section i of Chapter m. The chapter number is dropped within a chapter.

Cross-references on left margins of displayed lines

Numbering of It is serial throughout each chapter. In the examples below all references are
equations within the same chapter. Appropriate changes are otherwise introduced.

3 Equation (3) is used to derive the equation on the right.

3 Equation (3), in a changed notation, is used to derive the equation on the right.
,3 Equation (3) is used, but not immediately, to derive the equation on the right.
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Literature references

HOW TO USE THIS BOOK. NOTATION

Equations (2) and (3) are applied in that order to obtain the equation on the
right.

Equation (2) applied on equation (3) gives the equation on the right.

On any of the above, indicate a Figure from Part 2, a Table from Part 2, or a
Problem, respectively.

Ono (1945)

Identifies a paper or book under that name in the alphabetic list of references
at the end of this book.

2 Symbols used

Y

C(gi)
|IC(@G)], |C]
IC(@)], IC]
x(g | tf)

3ij
e, B

|

€

G

|G|, D3|
€

G(9). G(9)
i@

i

I'GI, I'G|
g

g

97", G
HcCcG
H<G

lil. i(G)]
111, [1(G)]
1], 11(G)]

For all.
Class of the element g;.

Number of classes of a group G. The name of the group is often left implicit, as
in the second symbol.

Number of classes of a double group G. The name of the double group is often
left implicit, as in the second symbol.

Character of operation ¢ in the irreducible basis (u].

Character of the operation ¢ (written as g when unambiguous) in the representa-
tions G or G of the group G.

Kronecker’s delta.

Identity element of a group.

There exists.

Belongs to.

Group of operations g.

Order of groups G, D3y, respectively.
Double group of point group G.

Matrix representative of the operator § (written as g when unambiguous) in the
representations G and G respectively.

i-th irreducible (ordinary or vector) representation of G.

i-th irreducible projective representation of G. Because vector representations
are a particular case of projective ones this symbol often denotes either vector
or projective (unitary) representations.

Dimension of the above representations.

Configuration-space operator.

Function-space operator, written as ¢ when unambiguous.

Inverse of element g;.

H is a subgroup of G.

H is an invariant subgroup of G.

Number of irregular classes in the group. (Name of group in brackets if neces-
sary.)

Number of irreducible representations in the group. (Name of group in brackets
if necessary.)

Number of spinor irreducible representations in the group. (Name of group in
brackets if necessary.)
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notation
K

LNnM
Lo M
LM
L®M
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Point-group
notation

Symmetry
operations
notation

T
1

*

T

||

|n]

{9:}

o (r))

(io(r)]

(p(r) | (r))

(@1,@2,“- 7<)DTL|

(ol
|z, y, 2)
@7 E
R

—

—def
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Imaginary unit.
Inversion at the origin of coordinates. Also marker for improper operations.
See Chapter 14.

Conjugator operator.

Intersection.

Semidirect product (L < (L ® M)).
Direct product.

Symmetrized direct product.
Antisymmetrized direct product.
See Chapter 5.

See Chapter 4.

Time reversal operator.

A unit matrix of appropriate dimension.

(Superscript.) Always a complex conjugate.

(Superscript on matrix.) Transpose.

(Superscript on matrix.) Adjoint: At = (AT,

Number of regular classes in the group. (Name of group in brackets if necessary.)

Upper limit of a running index n, not to be confused with an absolute value.
Notice the use of bold vertical bars to denote specific integers.

Set of all elements g;,i=1,2,...,n.

Ket.

Bra.

Bra-ket or bracket.

Row vector of components 1, s, ..., p,; basis of a representation.
Abbreviated form of the above symbol, not to be confused with a bra.
Column vector of components z, y, z, not to be confused with a ket.
Direct sums.

Mapping: the set on the left of this symbol maps into the set on the right.

Mapping: the element on the left of this symbol maps to the element on the
right.

If then: the statement on the left of this symbol implies the statement on the
right.

The corresponding equality entails a definition.

A table continues.







Part 1

Introduction to the Tables






1

Introduction

We shall first review briefly the literature and we shall then discuss the construction of the present tables.

1 Comparison with other tables

The best known tables for the point groups are probably those of Koster et al. (1963) which treat only
the thirty-two crystallographic point groups. They have the merit that double groups and Clebsch—
Gordan coefficients are provided. On the other hand, matrix representations are not explicitly given and
the individual identification of the symmetry operations is not transparent. Since the Clebsch—Gordan
coeflicients depend on the matrix representations chosen, the use of these coefficients is not as easy as it
would be desirable. Multiplication tables for the groups are not given, so that their definition remains
a little loose, specially for the double groups. At the other end of the scale from the point of view of
convenience of use, are the tables of Atkins et al. (1982). These authors deal with forty-seven point
groups but they treat the double-group representations for only a few of these. Only character tables are
given and bases are provided up to and including [ equals 2. Subduction tables are also included. These
tables are very convenient to use and almost free of error, the only mistake appearing in the table for Dj
where the labels E3/5 and Ej5/5 should be interchanged.

The tables of the crystallographic point groups included in Bradley and Cracknell (1972) offer several
advantages. The symmetry operations can be easily identified and they contain full matrix representations
and symmetrized bases, although Clebsch—Gordan coefficients are not given. A drawback of the tables is
that the matrix representative of an operation is not always directly related to it by the corresponding
rotation operator. In other words, the matrices do not have a direct geometrical meaning in every
case. Moreover, the double-group representations do not always subduce correctly to the corresponding
subgroups. (Examples of these problems can be seen in Altmann 1986, Chapter 15.)

Harris and Bertolucci (1978) contains a large collection of tables of point groups both crystallographic
and non-crystallographic. Only characters are given and no Clebsch-Gordan coefficients are provided.
The tables of Pyykkd and Toivonen (1983) contain full matrix representations for the spinor (double
group) representations of thirty-eight point groups and they are extremely accurate except that in Tables
A3.10, A3.18, and A3.19 the surd (y/) is missing in the characters for some of the operations. The
symmetry operations are well identified and their matrices have the correct geometrical meaning. No
Clebsch—Gordan coefficients are given, however. Perhaps the most comprehensive work on the point
groups is that of Butler (1981), which contains extensive tables of Clebsch—Gordan coefficients. Whereas
these depend on the bases chosen for the representations (or, what is largely the same, on the matrix
representations themselves) Butler has provided Clebsch—Gordan coefficients with very well defined phase
factors but which do not require explicit tabulation of the matrix representations. This is of course a very
major advance but it makes the tables very difficult to use. The excellent book of Piepho and Schatz
(1983), however, provides a very good introduction to Butler’s method.

The tables of Thomas and Wood (1980) should also be mentioned, although they are not directly ad-
dressed to the point groups. They provide, however, full tables of group-theoretical properties (including
multiplication tables) for all groups up to and including order 32 and although prepared from the point
of view of the pure mathematician they provide quickly a variety of useful results.

2 Construction of the present tables

All the tables described above were constructed, whenever the symmetry operations are explicitly given,
by using a parametrization of them based on the parametrization of rotations by Euler angles. For the
finite point groups this parametrization is as cumbersome as it is defective, since the Euler parameters
are not uniquely defined whenever the second Euler angle equals 0 or 7, which is the case for all rotations
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in all dihedral groups and in all crystallographic point groups. Altmann (1986, Chapter 15; 1989b), shows
examples of the difficulties thereby generated. We have used for this reason the quaternion parametriza-
tion of the symmetry operations as introduced by Altmann (1986). This parametrization permits very
simply the construction of the multiplication tables of the groups and double groups and they are given
here thus guaranteeing the precise definition of the groups and their representations.

Another advantage of the quaternion parametrization is that, with an adequate set of conventions
(Altmann 1986) it guarantees that subduction of the matrix representations from a group to a subgroup
can always be done correctly. This is important because, when spinor (or double-group representations)
are subduced, the property that the character is constant along a class can break down, thus spoiling
the subduction. Examples of this situation in the Euler parametrization can be seen in Altmann (1986,
Chapter 15), and in Altmann (1989b). It should be understood, however, that subduction cannot always
be guaranteed for all the subgroups of the same name of a given group. Thus the group Oy has four
Cs3, subgroups and subduction can only be ensured for two of them at the same time. (This is not an
artifact of the method used: it is a mathematical necessity.) We have paid a great deal of attention to
this question of subduction not just from one group to its subgroups but for whole group chains. First,
we have very carefully developed a notation that, although in complete agreement with the standard
notation for symmetry operations, is so chosen that the same operation does not change name along one
group chain. Secondly, on using the quaternion parametrization coupled with a set of simple and well
defined conventions, we have ensured that subduction is correct in all cases when this is at all possible.

For all groups treated we have provided complete sets of matrix representations. This means that a
choice of bases has to be made. It was customary in the past to use for this purpose spherical harmonics
in real form, as was done by Altmann and Bradley (1963q,b) and Bradley and Cracknell (1972). We
have moved away from this approach for two reasons. First, with modern computing facilities there is
no trouble whatever in dealing with complex functions. On the contrary, computer time is often thereby
saved. Secondly, we decided to use bases which are as directly related as possible to the canonical bases
of the full improper rotation group O(3). These are the harmonics and spin harmonics in the Condon and
Shortley convention. The bases themselves have been chosen so that they, and therefore the representation
matrices, change as little as possible along a group chain, thus making subduction as simple as it can
be achieved. Also, we have ensured in this way that whenever a double-group representation contains
representatives that should coincide with Pauli matrices this is actually the case.

The definition of the bases of the representations has also been simplified in the following way. Koster
et al. (1963) and all their successors, have used bases of O(3) which are incomplete in the sense that
only one spinor basis for j = 1/2 exists which is gerade. An ungerade basis for this value of j must then
be obtained by vector coupling the spherical harmonic for [ = 1 (ungerade) with the gerade spinor for
j = 1/2. Altmann (1986, 1987) was able to construct directly an ungerade spinor for j = 1/2 which
greatly rationalizes the presentation of the bases of O(3) and thus of the point groups.

In order to construct the tables with precise phase factors, we have used the method of the projective
representations (Brown 1968, 1970; Altmann 1979; Altmann and Palacio 1979; Altmann and Herzig 1982;
Altmann and Dirl 1984; Altmann 1986), which also, most importantly, permits printing of the tables,
which would otherwise had been prohibitively bulky, in a compact form. Although it is perfectly possible
to dispense entirely with the use of the double groups and work only with the spinor representations as
given by the projective-representation method, the present tables have been displayed in such a way that
no knowledge whatever of projective representations is required and that full details of the double groups
are most easily obtained from them. Nevertheless, those who wish to use the spinor representations from
the point of view of projective representations will have no trouble at all in doing so.

We present in these tables seventy-five groups and their corresponding double groups which cover all
the cyclic, dihedral and related groups up to and including proper rotation axes of order 10, plus all the
cubic and icosahedral groups. For each of these groups the stereographic projection is provided plus a
three-dimensional depiction. All the group operations can be clearly identified from these figures and
compared if desired with the full parameter tables given. In the three-dimensional figures, moreover, a
molecular structure of the correct symmetry is shown. Molecular examples for each group, whenever
possible, are also given. (Blanks have been left in the corresponding lines which users of the tables might
wish to fill in with further examples when available.) For each group and double group the following
tables are also given: multiplication tables, factor tables, character tables, tables of cartesian tensors and
s, p, d, and f functions, symmetrized bases, matrix representations, direct products of representations,
subduction tables, including subduction from O(3), and Clebsch-Gordan coefficients, except that the
latter are not provided for the icosahedral groups since they are prohibitively bulky in that case and not
very practical to use.
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Basic group theory: definitions and formulae

1 Basic group definitions

Group properties (postulates)

Given Set {g;},i=1,2,...,n; binary operation g;g;.
Associativity (9i95) 91 = 9i (9j9k)- (1)
Closure 9 €G,9; € G=gig9; €G. (2)
Identity JEe€G: ¢E=FEg; =g, Vg €G. (3)
Inverse Vg, € G = Elg;1 €@qG: g;lgi = gigfl =F. (4)
Group presentations
As set G={g;},i=1,2,...,n. (5)
As direct sum G=g1 D¢ - Dg, = E?:l 9i =9 gi- (6)
Group definitions
Order 5 n =gt order of G = |G|. (7)
Intersection GNH =g {ki} Vk; € G ki€ H. (8)
Conjugate of g; 999", g €G,g€G. (9)
by g Notice that the inverse is always on the right in this book.
Class of g; C(9:) = ®yyec 99:9~ ", (no repetition). (10)
No repetition means that only one copy of each element is kept in the
result of the summation.
Notice that if g; € C(g;), then C(g;) = C(g:). (11)
Classes of G G is a sum of disjoint classes. Their number is |C(G)|, abbreviated as
|C| when the group in question can be identified from the context. (12)
Subgroup H of G IfVhe H= h € G and H a group, then H C G. (13)
Proper subgroup Given G, H is a proper subgroup of G if H C G and H # E, H # G. (14)
Do not confuse the word ‘proper’ as used here with the same
word as used for proper point groups.
Index of H C G |G|/ H]| (15)
It is always an integer. (Lagrange’s Theorem.)
Invariant subgroup HcCGandVg e G,Yhe H=ghg~'c H. (16)
Notation for invariant: H < G. (17)
Simple group G is simple if it does not have a proper invariant subgroup. Not to be
confused with simple-reducible groups. (See 100.) (18)
Cosets, H C G Left coset of H by g € G: gH = ®,c iy 9h- (19)
Property of cosets gH = H,Vg € H. (20)
Right cosets Hg are similarly defined.
Cosets, H<1G 16 gH = Hg, Vg € G.
It follows that if |G|/|H| is 2 (index 2), H < G. (21)
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Coset expansion of G~ G=Y%,.s,H,i=1,2,...|G|/|H|, s; € G, s; € H (except s; = E). (22)
by HC G
Coset The s; in (22). Their choice is not unique. Convention in this book: one
representatives of the s; is always taken to be E. Notice: {s;} does not necessarily
close and thus it is not necessarily a group. (23)
Group products
GG 6 GG =aet i1 9i E?:l 9 =19k =G (24)
no repetition
Semidirect product IfG = Ej s;H, HQG, {s;} =SCG,SNH=E,
then G = {hiSj}W,j =gt H® S. (25)
Notice: (i) The invariant is always first in the product symbol.
(ii) However, as in the above, G is always given in this book in left cosets
of the invariant.
Direct product First definition from (25):
IfG:Ejst7 HAG, {s;} =S<G,SNH=E,
then G = {his;}vij =det H® 8. (26)
Second definition:
IfHNS = E, hiSj = thi7 Vi,j,
then {hisj}Vi}j =G =def H® S. (27)
2 Operators
Configuration-space operators
X, V¥, % Laboratory (space fixed) axes. They are never transformed. (28)
i,j, k Body or configuration-space axes, fixed in the system studied. (29)
r Position vector (tail at origin) of components z, y, z in the laboratory
axes, fixed with respect to i, j, k. Their components in i, j, k never
change. (30)
T, Y, 2 Independent variables (components of r in the laboratory axes). (31)
X, Y, Z Functions such as x(r, 8, ), etc. of any independent variables chosen. (32)
Operator g Operations such as rotations, reflections, etc., transform all r into r’,
with new components z’, 3/, 2’ in the laboratory axes:
gr =ger T'. (33)
g can also be defined as operating on i, j, k.
Active picture The above definition of operators in the configuration space is called
active. There is an alternative picture, the passive convention. All
operators used in this book are active. All symmetry elements,
such as rotation axes and planes, are fixed in x, y, z and never
transformed. (34)
Warnings (i) When g operates on i, j, k, notice that the transformation properties
of i, j, k are not the same as the transformation properties of =, y, z
implicit in (33). (35)
(ii) g cannot operate on the functions x, y, z. Operators on functions
are denoted ¢ in this book (see 37 below). However, no such distinction
is traditionally made when the conventional symbols for symmetry op-
erations, C' (for rotations), o (for reflections), etc., are used. Therefore
when such operators act on x, y, z they must be understood as function-
space operators and their transformation rules are different from those
of the configuration-space operators. (36)

10



VECTOR (ORDINARY) REPRESENTATIONS §2-3
(iii) Results obtained in the passive picture are not directly
compatible with the tables in this book.
Function-space operators
() The function f(r) after the configuration space has been transformed by
g.
Function-space gf(r) =qet f'(r). (37)
operator ¢
Defining relation for gf(r) = f(g~'r). (38)
9f
Warning Results obtained from the literature on using so-called altern-
ative definitions of (38) are not necessarily compatible with the
tables in this book.
Isomorphism of G G= {9} 99 = 9k = GiG; = G- (39)
and G Notice that because of this isomorphism it is usual in point groups to
employ the same notation for g and g, as long as it is possible to recognize
from the context which operator is meant. Accordingly, G and é’, are
usually treated as if they were one and the same group, rather than as
two distinct realizations of the same abstract group. This does not
mean that the transformations effected by the operators g and
g are the same: they may entail different matrices. Be warned.
Conjugator operator Given complex numbers w and w and the complex function f(u),
K Kwf(u) =qef w* f*(u*). (40)
K commutes with all geometrical symmetry operations.
Time reversal It leaves invariant position vectors r and reverses the sign of the mo-
operator T mentum p and spin s:
TrT !'=r, TpT!=—p, TsT ! =—s. (41)
For any scalar o and the Pauli matrix o, (see 11.18), it is given as
T=a0,K= [? (l)]K (42)
The matrix displayed here has been chosen for « = —i and it is a binary
rotation around the y axis in SU(2) (see 11.16).
This operator is a symmetry operation for systems in free space and in
the presence of electric fields but not in the presence of a magnetic
field.
3 Vector (ordinary) representations
Definition and properties
Definition Given a group G of elements g, map a matrix G(g) to each ¢ so as to
conserve the multiplication rules of G:
Glg) —g:  Glg:)Glg;) = G(gi9;)- (43)
The set {G(g)} =qef G is a (vector) representation of G.
Whenever the notation G appears in this chapter the formulae
given are valid either for vector representations G or for unitary
projective representations with standardized and normalized
factor systems. The reader who wishes to use the latter may
refer to Chapter 10. The reader who does not wish to do so
may read all inverted hats in this chapter as ordinary hats. (44)
Alternative G@) g Gla) GGy) = G(digy)- (45)
realization

11
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Warning Even when the matrices G’(gz) are identical with the matrices
G’(gi), they do not necessarily operate in the same way. All
matrix representations in this book are given in the sense of
(45) and even when this is not explicit and unless statements
to the contrary, the operators to which they refer are function
and not configuration-space operators. (46)
Unitary property G(9)T G(gi) = Glg1) Glga)T =1. (47)
All representations in this book (whether vector or projective)
are unitary.
Trivial Glg)=1, Vg (48)
representation
Faithful All G(g) are distinct. (49)
representation
Regular The matrix G(g) is the permutation matrix obtained by acting with g
representation on gi, gz, ---,9|G|- (50)
Bases of the representations; representations
Invariant space under A set of functions 1, 2, ..., N such that the transform of any function
all g of G of the set under any operation ¢ of G is a linear combination of the
functions of the set:
9pn = Eanzl Pm G(g)mw (51)
Row-vector {¢1,p2,...,on| = row vector of components ¢1, P2, ..., PN. (52)
notation Abbreviated as {(¢|.
Not to be confused with a bra (which is given in light brackets).
Matrix notation 52|51 3p1, 02, on| = (<P17§027---,<PN|G(§)- (53)
53 9{el = (el G(9)- (54)
46[54 g9{el = (el G(9)- (55)
Basis The functions {1, ¢2,...,oN|- (56)
Representation The set G =qor {G(§)} (also written {G(g)}, Vg€ G). (57)
For vector representations these matrices satisfy (45).
Dimension of the It is the dimension of the matrices G(g). (58)
representation, |G|
Function belonging Any function that transforms by the same coefficients G’(g)ml as ; in
to the i-th column of  (51).
the representation Also said to to be the i-th partner of the basis.
It is the i-th component (that is, it is in the i-th column) of the row-
vector basis.
Care must be exercised in comparing with other statements to
this effect in the literature. (59)
Independent variables  Components of position vector r (see 31).
basis x, y, z They transform under g, not g. The 3 by 3 matrix é(g) forms a rep-
resentation in the sense of (43) but the transformation rule of the
basis is not that given in (53):
Basis (column vector of components z, y, z): |z,v, ). (60)
Not to be confused with a ket (always given in light brackets).
Tranformation rule: g |z,y,z) = G(g) |z, y, 2). (61)
Tensor bases formed from z, y, z lead to representations like
(61) of dimension higher than 3, which must not be confused
with (53).
Basis x, y, z See (32). Being functions, they must be written as (x,y, z| and trans-
form under g as in (53), not as (61). (62)

12



VECTOR (ORDINARY) REPRESENTATIONS §2-3
Direct sum of bases Given bases (¢'| =aer (¢}, @5, ..., 9, |, i =1,2,... (compare with 52)
the row vector of components <p§, Vi, 7 is the direct sum of the bases,
written as follows:
(2] =%, ('] (63)
Direct sum of If ’G' is the representation on the basis {¢’|, the representation on the
representations basis (63) is given by block-diagonal matrices with the matrices ‘G along
the diagonal and it is called the direct sum of the representations:
Glg) =B 'G(9)- (64)
Similarity and unitary transformation of representations
Dependence of the G(g) in (55) depends on the basis. Write it therefore as G, (g):
representation on the  g{p| = (| G<p| (9). (65)
basis
Similarity Consider a second row basis {®| = {¢| C, for some suitable matrix C:
transformation el C=(elCCGeiclg) = glel ={(p|CGepicle) C7 (66)
66,65 Geple(g) = C7 1 Gey (9) C. (67)
Unitary 47|67 Gepic(g) = ct Ges1(9)C, (C unitary). (68)
transformation
Warning Similarity and unitary transformations are often used in the
literature with the inverse or adjoint on the right. For the
work of this book they must be used as defined here.
Characters
Definition, x(g | G)  x(g | G) =aet Lhily G(g)mm- (69)
As class functions g €Clg) = x(d | G)=x(g|G), VG. (70)
Invariance (g @) =x(g|CrTGC)=xlyg| cf GC), Vg,G, amatrix C. (71)
Irreducible representations and their properties
Irreducible One which cannot be taken into the form (64) by any similarity trans-
representation formation. The corresponding basis is an irreducible basis. (72)
Number, |I(G)| |I(G)| = number of irreducible representations of G, abbreviated |I]. (73)
[1(G)] = [C(G)]- (74)
Dimension relation Zili(lG)l I'G|? = |G| (75)
Orthogonality >0 "G95 C(9)pg = |G "G ™ 61 Gmp Ong. (76)
relation for the
representations
Orthogonality Y, x(91'G) x(g19G) = |G b5 (77)
relations for the 11(G) A i _1
characters e X(gm 1'G)" X(gn | 'G) = |G |C(gm)| ™ bran- (78)
Irreducibility The representation G is irreducible if and only if
condition >, x(g1G) x(g | G) =1G]. (79)
Schur’s lemma Given, for some matrix C,
'G(g)C =CIG(g), Vged. (80)
1) |'G| # J'G| = C=0. (81)
(i) |'G| = G| = (either /G = C~1 'G(g) C or C = 0). (82)
(iii) i=j = C =cl, cconstant, |1|=|G|. (83)
Corollary of Given |'G| = |G|,
Schur’s lemma IG = C~1iG(g) C = C unique except for phase factor w1, with |w| =1.  (84)
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4 Projection operators

Objective

Definition

Warnings

To generate, by acting on arbitrary functions ¢ (called the generators
of the expansions), functions that belong to the n-th component of a
basis of the i-th irreducible representation of a group, written ¢f , which
therefore transform as follows:

51,46 g¢l, = X2, @b 'G(9)mn-

Notice here that precisely the same transformation is valid if
the basis is multiplied throughout by an arbitrary constant
phase factor w, (Jw| =1).

Wiy ='GIGIT 32, 'Gl9)np 9- ]

inp ¢ = 99% = gr (Wép ¢) = Zm (Wrinp ?) iG(gr)mn-

(i) The first subscript in the projection operator determines the column
to which the projected function belongs and the second subscript has
to be kept constant throughout the basis.

(ii) Notice also that if different functions of the basis for different n
are generated from the first equation on (L 87) their phase factors may

differ, as follows from comparison of (85) and the second equation on
(R 87).

Properties of the projection operators

(89)

Product

Transfer operator

Adjoint

W'rilp Wi]]T = W'rlzr 5ij 61"1'

W’:;,p %’; = 0ij Opg P , 4
Notice that the transfer operator W; , applied on the function ¢; of
the basis transforms it into its partner ¢, of the same basis. This is
the way in which, by allowing n to range over the whole dimension of
the representation, all the functions of the basis are obtained with the
correct phases: see the second warning above.

(Wit =W,

Projection operator over a representation

(90)
(o1)

Definition

Property

W' =['GHGIT Xy x(g |G g.

Wt = linear combination of the functions ! .

5 Representation reduction

Objective

Multiplicity or
frequency

Double index iu

Simple-reducible
groups

Given the basis {¢| in (65) to find a matrix C such that {¢| C is reduced.
63 (oIC =5, (o]
i=1,2,...,I; v=1,2,...,]i; |i|=0,1,2,...

The notation in (63) has been expanded to recognize that the same
irreducible basis ¢ may appear in a number |i| of copies which is called
the multiplicity (or frequency) of the representation. The copies that
thus appear may be either identical, or linearly independent, or related
by a similarity transformation. The index u is called the multiplicity
index.

Notice that the double index iu may be regarded as a single index which
runs over all the bases that appear in the reduced representation.

The multiplicity is always unity for these groups. SO(3), O(3), and all
point groups except cubic and icosahedral are simple reducible. Do not
confuse them with simple groups. (See 18.)

(98)

(99)

(100)
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Form of the 67,64 Gepio(9) = C7 Gy (9) C =8, G(9). (101)
representation 97 i=12,...,0I; w=1,2,...,]i; ]i|=0,1,2,... (102)
Labelling of the The columns of the matrix C' that effects the reduction in (95) must be
matrix labelled as those of the basis (#%| in blocks of the form ium, where i

and u run as in (102) and m runs from 1 to |'G|. (103)
To bring C' into All the columns must be made orthogonal and each column normalized.
unitary form It is essential that this be done. (104)
Orthogonalization of  In order to orthogonalize all the columns of all the blocks of the form
columns ium, for a fixed 7 and v and m ranging as stated above, it is sufficient

to orthogonalize one set of |¢| columns for all u and one fixed value of

m. The same transformation that effects this orthogonalization will be

valid for all other values of m. (105)
Normalization of Once all the columns of C are orthogonalized, all the columns of a block
columns tum for fixed iu and m ranging are normalized by obtaining the single

normalization factor corresponding to any value of m. (See 167 below.) (106)
Uniqueness of C From (84) C is unique except for a phase factor. (107)
Multiplicity Given (97) and (98),
calculation lil = 1GI7 X x(g | 'G)* x(9 | G) = |G Xy x(g | 'G) x(g | G)* (108)
Notation used in this book for the indices
Irreducible i, 7, k, L. (109)
representations
Reducible No index or «, 3, 7. (110)
representations
Multiplicity indices u, v, w. (111)
Columns of bases, m, n, p, q. (112)
rows and columns of
representations
Representation reduction by projection operators
Objective To form C as in (95) to (102).
Step 1 Use (108) to determine the multiplicities. Use below only irreducible

representations for which |¢| is different from zero. (113)
Step 2 From (87), for ¢ € (¢|, form Wi o = ¢}, i=1, some p. (114)
Step 3 From (91), form Wi, % = ¢4 and then apply W4, on the result and so

on until the last partner of the basis (corresponding to the dimension of

the representation) has been obtained. (115)
Step 4 If |¢] is larger than unity, replace ¢ in Step 2 by one of its partners, until

the resulting function is linearly independent from (% and then repeat

Step 3 until a new basis is formed. (116)
Step 5 If the multiplicity is two or larger, Step 4 must be repeated until the

total number of bases required by |i| is formed. (117)
Step 6 Repeat Steps 2 to 5 until all irreducible representations are treated. (118)
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The coefficients that appear in the symmetrized combinations give C,
but the matrix must be made unitary by using (105) and (106).

For a given irreducible representation take one column, say the m-th one,
in each of the copies (|i| in number) of this representation and ortho-
gonalize them (if necessary by Schmidt’s procedure): the transformation
thus obtained will be valid for all columns of the same representation.
(See 105.) Likewise, the normalization factor required for the columns
is the same for all the columns of all the copies of the same irreducible

representation. (See 106.) (119)
Representation reduction by the internal method
Method Given a representation é(g), form the matrix M which is the sum (not

the direct sum) of the matrices of one class of G. Find the matrix U

which diagonalizes M. The matrix U reduces G(g). This method does

not give any precise form of the irreducible matrices arising, whereas

the projection operator method gives bases adapted to specific forms of

the irreducible representations. On the other hand, it can be used when

irreducible representation matrices are not available. (120)
6 Direct products
Representations of direct-product groups
Direct product, Given G = H ® S = {hs}, (121)
bases H(h), basis {2%,], |'H| =det |m|, (122)

iS(s), basis (i |, |%S| =aet |7, (123)
Dictionary order The irreducible bases of G, in dictionary order, are of the form

(Pl @A = (L1 U1, Pl Vs Oy Yy | =aet (0 VAL (124)
Double subscript The columns of the direct-product basis in (124) are labelled by a double

subscript:

(@in ’lpgll =def (Efnnl (125)
Labelling of Correspondingly, the rows and columns of the irreducible representation
matrix of G spanned by (125) are labelled by double subscripts:

kG(hs) = "H(h) ®95(s) = FG(h8)mn.pg = H (7Y mpIS(8)ng- (126)
Characters x(hs | 'H @38) = x(h | 'H) x(s | IS). (127)
Number of [I(H®S)| = |I(H)||I(S)]. (128)
irreducibles
Direct product of two representations of the same group
Representations to g{ol | = {08 | 'G(g), m=1,2,...,|'G| =act ||, (129)
multiply 9{ehl = {ehl’Glg), n=1,2,....G| =qe |nl, (130)
Direct-product basis 124 (¢l | @ (W) ]| = (goiﬂbi, . Cla Vs Pl V1| (131)

et (e il (132)

Direct-product G(g) = 'G(9) ® 'G(g), basis {Pmn| =det (¢l V1] (133)
representation
(reducible)
Its matrix elements G(9)mnpg = "C(9)mp?G(9)ng, (134)

where the rows and columns of the direct-product matrix are labelled

by the double subscripts used in the basis (x| in (133).
Characters x(g | 'G®IG) = x(g9|'G) x(g | ’G). (135)
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Bases to multiply (il =aet {pml;  (Ln] =aet (¥nl. (136)
Direct-product basis 132 (eml@(n| = {(om ¥Yn| = %(‘Pm Ynt+on ¢m|@%(@m Vn—Pn Ym| (137)
def (‘Pml ® (1/)n| @ (‘Pml ® <wn|' (138)
Symmetrized direct (Pm| @ (Un| =act 2{Pm ¥n + ©n ¥ml. (139)
product
Antisymmetrized (Pm| @ (Un| =dct 3{Pm ¥n — @nthml, (M #n). (140)
direct product
Characters x(g | 'G®'G) = 3 [{x(g | iGYY? + x(g? | lé)] (141)
X(91'G®G) = 3 [{x(g 'G)}* — x(¢* | 'G)]- (142)
Warnings The symbols ‘G ® G and ‘G @’G’ are given in the literature as [ZGQ] and
{iGQ} respectively, although this use is not always consistent. If the
bases are identical the antisymmetrized direct product vanishes and
the only meaningful direct product is the symmetrized one.
7 Clebsch—Gordan coefficients
Objective To reduce the direct product (131) by means of the transformation (96).
Notation
Representations Are given in the summation rather than the matrix notation.
Elements of the Elements of a basis will be denoted by a ket holding the indices of the
product bases. Kets function:
120 i, = lim), 0, = lim), @l v = [im) [jn). (143)
Basis 129 (@8] =der <|zm>|, m=1,2,...,|'G| =aet |m|. (144)
The irreducible bases ~ The symbols and indices of the irreducible bases which appear in the
reduction of the direct product as well as those of the corresponding
irreducible representations will be given in capitals. (145)
Thus the reduced basis {#“| which appears in (96) will be written with
components
oLV = |IUP), (146)
where I: representation; U: multiplicity index; P: column index. (147)
Definition of the Clebsch—Gordan coefficients
The representations In the new notation,
multiplied (or 129 glim) = Zp |ip) ‘G (9)pms pym=1,2,... |'G| =qet |m|, (148)
coupled) 130 glin) = Zq lja) jé(g)qm ¢en=12..., Ijél =def |n]- (149)
The direct-product 131 <|zm)| ® <|jn)| =
basis (dictionary <|21> [71), .. 2y [F|n]), - . -, lim) [gn), ..., Jim]) [41), . . ., [i]m]) |j|7’l|>| (150)
order)
The reduction matrix 96’ > lim)|jn) Cpn p = @V = |IUP). (151)
C' (the Clebsch—
Gordan matrix)
Notation for matrix 151 Crn.p =det (mn | IUP). (152)
elements of C
Notation for the Clebsch—Gordan matrix
Left superscript ij It indicates the two irreducible representations the direct product of
which is reduced by the Clebsch—-Gordan matrix. (153)
Indices on bra The two indices mn used as a single subscript in dictionary order indicate
the row of the Clebsch-Gordan matrix. (154)
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§28

Indices on ket

BASIC GROUP THEORY

The first two are redundant from the point of view of the matrix-
element labels: they indicate respectively the irreducible representation
and multiplicity index for the reduced basis. These indices are intro-
duced here for symmetry of the equations. The last index, P, denotes
the element (column) of the reduced basis.

The Clebsch—Gordan matrix

(155)

Full form of the
reduced basis

Formula for the
Clebsch—Gordan
(unitary) matrix

Warning

152]151 [IUP) =" |im) |jn) “(mn | IUP).
=def Y [idmn) “mn | IUP).

g - . . y —1/2
mn | TUP) = ['GI2 G172 { £, 1Gg)m 7Gl9)ss "G (9)50 |

It follows from (84) that the whole of the matrix of Clebsch-Gordan
coefficients can be multiplied by an arbitrary phase factor exp(iw) with-
out any observable change. Other phase factors, much more significant,
arise through the fact that the irreducible representations (148) and
(149) which are coupled are only defined within a similarity, but these
factors can be eliminated if stated bases are used in every case, as is
the case in the tables. Erratic phase factors may also appear in spinor
representations owing to arbitrariness in the multiplication rules of the
double group. These uncertain factors have been eliminated from our
tables because of the accurate definition of the projective factors (or
what is the same of the double-group multiplication rules). A number
of schemes are given in the literature to fix the overall phase factor of
the Clebsch—Gordan matrix and the user of the present tables can easily
make his or her own choice.

(156)
(157)

(158)

(159)

8 Matrix elements and selection rules

Definition

Selection rule

Warning

Matrix elements of
the Hamiltonian

Matrix elements of
the Hamiltonian for
fully symmetrized
functions

Given two functions ¢’ and 17, which belong to the representations ‘G/(g)
and 7G(g), respectively (this means that they are linear combinations of
the functions of the corresponding bases) and some operator U, which
belongs to the representation *G(g), write the matrix element

Lij = [(@")* UF 9 dr =qer (9* | UF | 47).

This matrix element provides the transition probability between the two
states 1* and v’ induced by a perturbation with the operator U*. The
vanishing of this element gives a selection rule.

Ii; #0 = iG(g) ®IG(g)" contains *G(g).
If the bases 1* and 97 are identical, then the symmetrized direct prod-
uct (see 139) must be taken in (161).

When U* is the Hamiltonian H, the representation *G(g) is the totally
symmetric (trivial) representation. The rule (161) becomes:
I; #0 = ‘G(g) = 'G(g), (within a similarity).
Given two functions !, and 17 , which belong to the m-th column of the
representation ‘G/(g) and to the n-th column of the representation /G/(g),
respectively, the matrix element of the Hamiltonian has the following
orthogonality property:

H, = [(45,)  Heg, dr =aet (¥y, [ H | 4))
87 = (Wi, 6 | Wi, 6) = (6| H | (Wi,)T Wi, )
92,90 = (¢ | H | Wi, Wi, 6) = (& | H | W}, 6) 64j Srun
166 =def H' 0ij Opn, (H® independent of m).

(160)

(161)

(162)
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THE WIGNER—ECKART THEOREM 8§ 2-9

Orthogonality of Ji = (L) ¥ dT =qer (V% | 1)

basis functions 167 = J"6ij 6mn, (J'independent of m). (168)

9 The Wigner—Eckart theorem

Objective To obtain the form of the matrix elements when one of the functions
belongs to a direct-product basis |ijmn) = |im) |jn). (See 157.)

The theorem 157 (lijmn)| = ({IUP)| “¥(mn | IUP)Jr (169)
169 (I'P' | ijmn) = 3y p (I'P" | TUP) mn | IUP) (170)
168|170 =Sy (I'P | TUP) imn | TUPY 6111 6prp  (171)
168|171 (IP |ijmn) =get >r; (I || IU) “(mn | IUP)T. (172)

Reduced matrix It is the term (I || IU), which is independent of P. (173)

element

Importance In simple-reducible groups (see 100) the summation over U disappears,

in which case the ratio of two matrix elements belonging to the same
irreducible representation I is provided by that of the Clebsch—Gordan
coefficients. For a more specialized form of the theorem see Condon and
Odabas (1980) or Messiah (1961).

10 Subduced and induced representations

Subduced representations (descent of symmetry)

Definition Given G, H C G, G = {G(g)}, Vg € G, the subduced representation or
restriction of G down to H is the set {G(g)}, Vg € H. (174)

Warnings If G is irreducible it does not follow that the subduced representation is
irreducible.

If the subduced representation is irreducible it does not follow that it
is always identical with one of the irreducible representations tabulated
for H. (A similarity might be entailed.)

For spinor representations (half-integral angular momenta) subduction
might fail in the sense that the subduced representation does not satisfy
the conservation of the characters as class functions.

Induced representations

Definition Given H C G, and a representation H(h) it is possible under certain
conditions to construct a representation G(g) starting from the matrices
H(h). This is called an induced representation. (175)

Bibliographical note

Most of the results quoted in this chapter may be found in all books on group theory, in particular
Tinkham (1964) and Jansen and Boon (1967). A careful discussion of function-space operators is given
in Wigner (1959). The distinction about the transformation properties of the independent variables x,
Y, z, the dependent variables x, y, z, and the unit vectors i, j, k can be studied in Altmann (1986). A
complete discussion of projection operators and Clebsch—Gordan coefficients may be found in Altmann
(1989b). A proof of the internal reduction method is given in Altmann (1962). The formula quoted for
the calculation of the Clebsch-Gordan coefficients is due to Dirl (1979). A full discussion of induced
representations is given in Altmann (1977). A careful discussion of phase factors for the Clebsch-Gordan
matrix is given by Koénig and Kremer (1973) and Butler (1981).
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3

Parametrization of symmetry operations

1 Axes and general definitions

X,y z
ij k
r

Operation, g

Inverse, g—!

Active or passive

Axes fixed in space.

Axes fixed in the system. They coincide with x, y, z for the identity
operation as performed on the system.

Position vector fixed in the system. (Its components in i, j, k do not
change.)

Transforms i, j, k into i, j/, k/ or r into r’.
Transforms i/, j’, k’ as defined for g into i, j, k.

All symmetry operations are treated as active in these tables, that is
they refer to transformations with respect to the fixed axes x, y, z. (See
2.34.)

2 Parametrization of proper rotations

Euler angles
R(aB7) A rotation of i, j, k by v around z, followed by a rotation of the trans-
formed i, j, k by 8 about y, followed by a rotation of the transformed i,
j, k by a about z. These combined operations take the original i, j, k
into 1/, j/, k'. (7)
Notice: « first angle, 3 second angle, « third angle.
Ranges - <<, 0< g8 <m, —rT<a<m. (8)

Inverse R(afy)~!

Ambiguities

R(aBy) ' =R(—y £, B, —a£m).

Choose the =+ signs so that the corresponding angles are in range.
R(a0v) = R(a+,0,0) = R(0,0, x + ).

R(amy) = R(a + w, 7,y + w), for an arbitrary w, subject to range.

The two cases above affect all Euler angles for all operations in all cyclic
and dihedral groups. See also (67).

Angle and axis of rotation

Axis

Positive and negative
rotations

Place the object at the centre of a unit sphere. (Sphere of unit radius.)
Assume that any rotation rotates the sphere solidly with the object,
leaving fixed the centre of the sphere. The rotation axis is the diameter
of the sphere which is left invariant under the rotation.

Except for the identity and binary rotations (rotations by =), all the
proper rotations appear in pairs, one member of the pair being positive
(counter-clockwise when looking from outside the sphere) and the other
negative (clockwise when looking from outside the sphere). Notice that
this distinction is not precise and that the conventions that follow tighten
it up to avoid positive and negative rotations been mixed up.

(13)

20



Poles n

Antipoles

Binary rotations

Identity
Conjugate poles

PARAMETRIZATION OF PROPER ROTATIONS

Each rotation of a group is mapped onto a unique position vector n on
the unit sphere as follows. Given the axis common to the two rotations
by +¢, the end of this axis, called the position vector n of each pole, is
assigned to each of these two rotations so that when viewing the head
of this vector from outside the sphere the rotation is seen as counter-
clockwise.

Given the pole n for the rotation around an axis by +¢, its antipole
—n is the pole of the rotation by —¢. Notice, however, that the
distinction between +¢ and —¢ is made only in the name of
the operation. Both rotations are positive rotations by ¢, the
one labelled +¢ around the pole n and the one labelled —¢
around the pole —n.

The rotation by — is identical with the rotation by 7 and only one end
of the rotation axis must be chosen conventionally as the pole, its other
end or antipole being discarded.

No pole is assigned to the identity. (But see 24 and 26.)

If ng, is the pole of g;, the point gn,,, where g is a rotation of the group,
is the pole of the conjugate operation of g; by g, ngg,,~1. Two poles so
related are called conjugate.

Rules for choosing a set of poles as used in the tables

§ 3-2

(16)
(17)

(18)

Rule 1. Conjugate
poles

Rule 2. Subgroups

Warning

The parameters ¢, n,

All poles of operations of a class must be transformed one into another
by the group operations. This is not trivial: if ¢ and ¢ are in
the same class, operations of the group might either leave n,
invariant or transform it into the antipole of ¢'.

If the group treated contains a subgroup and it is required that the
representations of the group subduce properly to those of the subgroup,
then the choice of poles must be made in such a way that Rule 1 is still
valid when the group operations used in order to transform the poles
are only operations of the subgroup.

The choice of a set of poles for a group is conventional but not arbitrary.
The rules given are necessary and sufficient to ensure that the characters
are constant over a class of the group and remain so for the subgroup, a
property that, although always true for ordinary group representations
is not otherwise satisfied for spinor representations (half-integral angular
momentum).

and ¢n

Rotation angle ¢

Rotation pole n
(Rotation axis)

R(¢m)
Vector parameter;
the identity

As follows from (15), it is always positive (counter-clockwise) in the
range 0 < ¢ < 7.

(i) For all proper rotations except the identity it is the vector n chosen
in accordance with (14), (15), (16), and (19) to (21).

(ii) For the identity it is the null vector.

A rotation by the angle ¢ about the pole n.

¢ and n are not, considered as a pair of parameters, good parameters
for the rotation group, because any element of the infinite set {0,n}, for
all n, maps the identity, thus breaking the required one-to-one property
of the mapping. The single vector ¢n, of modulus |¢pn| = ¢ is instead a
good parameter, since in this system the identity is mapped by the null
vector only. This is the reason for the choice given above for the vector
n for the identity.

(26)
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§3-3 SYMMETRY OPERATIONS PARAMETRIZATION

R(¢n) The symbol R(¢n) will when necessary be used in the present sense, ¢n
indicating the vector parameter. (27)
Quaternion (Euler—Rodrigues) parameters A\, A
Requirements A set of poles (see 13 to 17 and 21) and values of ¢ and n (see 22 to 24)
must first be determined.
A cos % (28)
A sin £ n. (29)
A A] The quaternion [cos %, sin % n]. This quaternion corresponds always to
a unique proper rotation g; of the group but, when single rather than
double groups are considered, then the operation g; is parametrized by
+[cos %,Sin % n]. The parameters listed in the tables are always given
for the positive sign in this expression. (30)
Multiplication rule If gig; = gr and g; — [N, Ail, g5 — [N, Al g — [k, Ak, (31)
then,
I, AlTAG, AT = TAid) — A - Ay, A + A+ Ay x A = [, Ag (32)
Warning In single groups, the quaternion on the right-hand side of the above
multiplication rule may be multiplied by +1 without any change. (33)
Note The only property of quaternions that the reader needs to use
is that it is an object defined in terms of a (real) scalar and a
vector with the multiplication rule (32).
Cayley—Klein parameters
Requirements A set of poles (see 13 to 17 and 21) and values of ¢ and n (see 22 to 24)
must first be determined.
a cos % —in,sin % (34)
b —(ny +ing)sin % (35)
3 Parametrization of improper operations
Improper rotations Written always as ig where g is a proper rotation.
ig =gi, Vg. (36)
Inversion The inversion operator ¢ is kept as a marker in the parameters of all
improper rotations. In order to satisfy the commutation property above,
the quaternion parameter for the inversion is i [1,0]. For the inversion
operator i> = E, but for the marker ¢ in the parameters the rule is
i = 1. (37)
Notice that no notational distinction is made between the operator ¢ and
the marker 3.
When acting with the symmetry operations on polar vectors,
i changes the signs of their components.
Warning For simplicity, the marker i is omitted from the tables but
it is implicitly applied to all the parameters of all improper
rotations. (38)
Reflections o 0=1iC2, CyLooro=iR(m,n),nlo. (39)
(mirrors) Notice that in the tables the parameter for o is listed as the parameter
for Cs, the marker ¢ being kept implicit.
Rotoreflections Sy, Spm=R(%n)s, oln. (40)
=R(%n)iR(mn) =i R(2 + m,n) =i R (—(7 — 2X),n). (41)
Notice that in the tables the parameter for .S;, is given as the parameter
for R (ﬂ' — %, —n), the marker i being kept implicit. (42)
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PARAMETRIZATION OF DOUBLE-GROUP OPERATIONS § 34

Multiplication rule It is the same as for proper rotations, except that the markers, which
can be commuted and grouped as required, must be either kept, or
multiplied on using the rule i> = 1. Example:

If gigj = gk and g; — [[)\i>Ai]]7 gj — 1 [[/\j7Ajﬂ, gi — 7 [[)\k;Ak]L

then,
[[)\i, A,]] 1 [[)\j7 A]] =1 [[)\1)\j —A;- Aj, )\1AJ + )\]Al + A; X Aj]] (43)
=i [Mg, Ax] (44)
Warning In single groups, the quaternion on the right-hand side of the above

multiplication rule may be multiplied by +1 without any change.

4 Parametrization of double-group operations

Requirements Group G = {g;}, set of quaternion parameters [A;, A;], for all g; € G.
(See 28 to 30.)
Possible Only the quaternion or Cayley-Klein parametrizations.
parametrizations
E R(27n), any n. Take R(270), quaternion parameter [—1, 0]. (45)
Eg; = g:E, Yg;. (46)
i Egi~ (47)
G {9:} & (3. (43)
Parameter for g; [Ai, As] (49)
Parameter for g; Given the parameter for g; as +[\;, A;], it is
[-1,0][X\:, Ai] = [—Nis —A]- (50)

(See the multiplication rule 32 for the quaternion parameters.)

Notice that these parameters are not listed in the tables. They
can most simply be obtained by changing the sign of the single-
group parameters.

Multiplication rules The same as for proper rotations, where the tildes can be applied to any
of the factors or may appear in the result through the quaternion of a g
operation. The quaternions for the operations (with or without tildes)
corresponding to the subscripts ¢ and j, respectively, are multiplied in
the normal manner:
[[/\iyAi]] [[/\j,Aj]] = [[)\,‘)\j —A;- Aj, /\LA] + )\in + A; X A]]] = [[)\k, Ak]] (51)
The quaternion on the right-hand side gives the result of the product, the
sign of the quaternion components revealing whether it is an ordinary
or a tilde operation. Notice that the multiplication rules (37) for the
inversion and its marker still obtain. (52)

Warning See § 10-1 for the notational distinctions necessary for the
multiplication rules of groups and their double groups.

5 Calculation of the Euler angles

Objective To calculate the Euler angles from the angle and axis of rotation.

I6; cosB=1—-2(n2+n )sm2 2 sin 3 = +(1 — cos? B)1/2. (53)

e tana = (—n, sin @ + 2n,n, sin é’) (ny sin ¢ + 2n,n, sin® %)*1, (54)
sina = (—ngsin¢ + Qnynz sin %) (sinB)~t (55)
cos o = (ny sin ¢ + 2n.n, sin ) (sing@)~! (56)

v tany = (n, sin ¢ + 2n,n, sin’ ‘;) (ny, sin ¢ — 2n,n, sin %)71, (57)
siny = (n, sin ¢ + 2n,n, sin? 5) (sin 3)~1 (58)
cosy = (ny sin ¢ — 2n,n, sin’ %) (sin )t (59)




§36

Special cases

SYMMETRY OPERATIONS PARAMETRIZATION

The following special cases are important.

8=0,n,=+1 a=0,~v=0¢. (60)
6=0n,=-1 a=0,v=—¢. (61)
b=md=m v = 2tan"t(ng/ny). (62)
Note The Euler angles are undetermined in the cases shown above. The results
(60) to (62) are obtained on using (10) and (11) sensibly and are the
formulae used in constructing the tables.
6 Calculation of the angle and axis of rotation from the Euler angles
Comment The following expressions will rarely be needed.
o) cos & :cosg cos 3 (a+17), sin & = (1 — cos? £)1/2. (63)
n, n,= (sin2)"'cos? sini(a+7). (64)
Ny Ny = —(sin%)_1 sin% sin 3 (o — 7). (65)
ny ny = (sin %)*1 sin g cos 3 (a— 7). (66)
Note Notice that, given the Euler angles, the sign of the vector n remains

undetermined, because of the £ sign in sin %

Bibliographical note

The definition of the Euler angles used here agrees exactly with the notation of Rose (1957), Brink and
Satchler (1968), Biedenharn and Louck (1981), Butler (1981), and, with minor changes of notation, Fano
and Racah (1959) and Messiah (1961). Further details of the definitions and conventions used in this
chapter may be found in Altmann (1986). Poles are defined in that book as points on the unit sphere
rather than as position vectors of it, but this does not entail any basic difference.
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4

Symmetry operations: notation and properties

The principles which have guided the choice of the notation used in the tables and described below are
as follows:

(i) To ensure agreement in notation, for the groups already found in published tables, with the
notations most commonly used in the literature.

(ii) To emphasize whenever possible the importance of the binary rotations about the axes x and y,
since, for the representations for j = % they are, except for a numerical factor, the Pauli matrices.

(iii) To minimize the number of changes in notation required when going from a group to its subgroups.
When different operations in the same class have to be distinguished by means of a numerical subscript,
the actual choice of this subscript (which may be read from the stereographic projections) has been done

with this purpose in mind.

1 Key to the symbols for symmetry operations

Basic notation

E
)
Cs

cr,Cy

Sy, Sy

Identity.
Inversion.

Binary rotation, always understood as a rotation by 7 about the con-
ventionally defined pole. (See 3.16, 3.19, 3.21 for the rules used for this
conventional choice.)

Rotations by 27 /n also called proper rotations. Given an axis of rotation
(diameter in a unit sphere) one end of it is chosen conventionally as the
pole and the other end is the antipole. (See 3.14, 3.19, 3.21 for the rules
used for this conventional choice.) Positive rotations are seen as counter-
clockwise when looking at the sphere from outside the pole. Negative
rotations are seen as counter-clockwise when looking at the sphere from
outside the antipole.

Rotoreflections by 27 /n. They are always given as a rotation C,I, C,;
followed or preceded with a reflection on a plane perpendicular to the
axis of rotation.

Reflection plane, always treated in this book as the product iCs, where
the binary rotation is normal to the reflection plane and it is given
a conventional pole. (See 3.39, 3.19, 3.21 for the rules used for this
conventional choice.) Also called a mirror.

Embellishments, subscripts, and superscripts

C,,CH C, Whenever the subscript is single and no embellishments further than
Sk S, those shown here are used, the rotation or rotoreflection is about the z

axis, the poles for C;f and C); being along +z and —z, respectively. (7)
cmE gmE Rotation and rotoreflection, respectively, by £27wm/n. (8)
Coz, Coy, Ca., Binary axes along the x, y, and z axes respectively, always right-handed. (9)




§4-2

!
CQP

4
CQP

Ogy Oy, Oz

Oh

Odp

Subscripts h and v

SYMMETRY OPERATIONS NOTATION

One class of binary axes, designated by different alphanumerical values
of p. If p is a numerical index they are all perpendicular to the principal
axis (21), that is they lie on the x,y plane. C%; is always chosen along
the x axis.

Another class of m binary axes designated by different numerical values
of p and perpendicular to the principal axis (21). If the binary rotation
about the y axis belongs to this class it is always labelled C%;.

Reflection planes perpendicular to the axes x, y, and z, respectively.

Reflection plane perpendicular to the z axis (alternatively labelled o, if
04, 0y belong to the group).

One class of m reflection planes that contain the z axis, designated by
different numerical values of p.

If the principal axis (21) is of order n, these planes are set as follows:
Oup L Oy, for n =4, v integral.

oupLCy,, forn=4v+r, vintegral, r =1,2,3.

Either another class of m reflection planes that contain the z axis, desig-
nated by different numerical values of p, or the only class of such planes
if they also intersect the angle between two binary axes perpendicular
to z.

If the principal axis (21) is of order n, these planes are set as follows:
oapLCy,, forn=4v+r, vintegral, r =1,2,3.

oapL Oy, for n =4, v integral.

The principal axis is always imagined to stand vertically along the z axis.
With respect to this orientation h and v always stand for horizontal and
vertical respectively.

2 Special rotations and rotoreflections

Principal axis

Binary axis

Bilateral axis

Bilateral-binary

Binary
rotoreflection

It is the axis of rotation or rotoreflection about the z axis. Except in
the tetrahedral and icosahedral groups, it is always the axis of highest
order in the group.

Note that the use of this expression in the literature is not
always identical to the one given here.

An axis of rotation by 7. It is always its own inverse, except when
double-group notation is used.

An axis of rotation with a binary axis perpendicular to it or a mirror
that contains it. The positive and negative rotations about a bilateral
axis always belong in the same class.

A binary axis that is bilateral.

It is identical with the inversion.

The word rotoreflection in this book is always used excluding
the case of binary rotoreflections.

3 Commutation of symmetry operations

Two rotations

Two symmetry
planes

A rotation and a
symmetry plane

They commute if and only if they are either coaxial or bilateral-binary.

They commute if and only if they are coincident or perpendicular.

They commute if and only if either they are perpendicular or the rotation
axis is binary and it lies in the symmetry plane.
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SPECIAL RELATIONS FOR SYMMETRY OPERATIONS §4-4

Inversion Commutes with all symmetry operations. (29)
Two rotoreflections They commute if and only if they are coaxial. (30)
A rotoreflection and They commute if and only if they are perpendicular. S5 is excluded

a symmetry plane from this rule. (See 33 below.) (31)

4 Special relations for symmetry operations

1Cy = Cat It equals oj,. (See 6, 7, and 13.) (32)
Sa It equals 7. (S2 is never used in this book.) (33)
Cmtj =i Cm* It equals o, CS"2™F = S{"™2™F subject to division by a common

factor of the upper and lower indices. (34)
SmE It equals iCéZﬁQm)jF = C’Q(de)¥ i, subject to division by a common

factor of the upper and lower indices. (35)
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5

Notation for point groups, single and double

1 Cyclic, dihedral, and related groups

Group Characteristic symmetry elements
C, n-fold axis C,, (see 4.4) only. Cyclic group. (1)
S, n-fold alternating axis S, (see 4.5) only. Cyclic group. (2)
C.n n-fold axis C,, plus a reflection plane o}, (see 4.13) perpendicular to it. (3)
C.o n-fold axis C), plus n reflection planes o, (see 4.14 to 4.16) through it. (4)
Coov Continuous rotation axis plus a continuous infinite number of reflection

planes o, through it. (5)
D, n-fold axis C,, plus n binary axes Cj;, Cy; (see 4.10, 4.11) perpendicular

to it. Dihedral group. (6)
D.q As for D, plus reflection planes o4 (see 4.17 to 4.19) bisecting the

angles between the binary axes. (7)
D, As for D,,, plus a reflection plane oy, (see 4.13) perpendicular to C,. (8)
Doon Continuous rotation axis plus a continuous infinite number of binary

axes perpendicular to it, plus a continuous infinite number of reflection

planes o, through it. The reflection plane oj appears as iCsy, where Cs

belongs to the continuous rotation axis. ©))
C; This is the notation used in the tables for Sy (identity plus 7). (10)
C, This is the notation used in the tables for Cy;, (identity plus o). (11)
C,i n-fold axis C,,, plus the inversion 1. (12)

Not used in the tables. For n odd, it is given as S,,. For n even, it is

given as C,y. Rule: first priority is given to the cyclic group notation.

Second priority is given to op,. (13)
2 Cubic groups
Group Characteristic symmetry elements
(0] Three Cy (mutually perpendicular), four C3 which permute the poles of

the C4 amongst themselves. (14)
T Three Co (mutually perpendicular), four C3 which permute the poles of

the Cy amongst themselves. (15)
(013 Like O, with the inversion. The reflection plane o appears as iCo,

where C5 belongs to the principal axis z. (16)
T, Like T, with the inversion. The reflection plane o, appears as iCo,

where Cs belongs to the principal axis z. (17)
Ty Like T, but the three C5 are each in the subgroup of an S, axis. (18)
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ICOSAHEDRAL GROUPS § 5-3

3 lcosahedral groups

Group Characteristic symmetry elements
I Six Cs, ten Cs, fifteen Cs. (19)
I, Like I, with the inversion. (20)

4 Double groups

G If G is any of the groups above, G is its double group. (21)

5 The Hermann—Mauguin or international notation

n The principal axis (z axis) is a rotation axis of order n. (22)
n The principal axis (z axis) is a rotoinversion axis of order n. (Rotation

of order n followed or preceded by the inversion.) (23)
n2 or n2 A binary axis perpendicular to the principal axis. (24)
nm or im A mirror (reflection plane) parallel to the principal axis. (25)
o or % A mirror perpendicular to the principal axis. (26)
Further entries They refer to secondary axes.

Bibliographical note

The notation used above is the standard Schonflies notation. For complete details of the Hermann—
Mauguin international notation consult the International tables for crystallography (1989) where a de-
scription of the short form of this notation may also be found.
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6

Derivation of the proper and improper point

groups

1 Definitions for proper point groups

Proper point groups
G ={g}

Pole n,

Antipole of n,
Pole of identity
Pole of binary g

Cyclic group
associated with g

Conjugate poles

Set of conjugate poles

Vi

Disjointness

Partition of the poles
of G; P

Double counting of
poles

Total number of
poles, v

New v;

Obtention of v;

Contain the identity and proper rotations C, (rotations by 27“) only.
Proper point group of order |G| = N.

The position vector of the unit sphere left invariant by g and such that g
is seen as counter-clockwise when looking at n, from outside the sphere.

The pole of g~ (but see 6 below).

None.

1

In this case g7 is identical with ¢ so that the antipole does not corres-

pond to a different operation (but see 13 below).
If g = C,, all the operations of C,, (cyclic group of order n) leave n,
and ng-1 invariant.

The vector gng,, g; € G, is ngy,,-1, Vg € G. ng, and ny, -1 are called
conjugate poles. This property is transitive.

Given ng,, the set {gng, }, Vg € G, is such that any two poles of the set
are conjugate amongst themselves. This is a set of conjugate poles. All
the rotations of the set belong to the class C(g;) and are of order n;.
The set {gng, }, Vg € G contains repetitions. v; is the number of distinct
poles in the set. (But see 15 below.)

Two sets of conjugate poles are either identical or disjoint.

The set of all poles of G separates out into P disjoint sets.

Each rotation g, binaries included, will henceforth be assigned two poles,
namely n, and its antipole. This means that the poles at the ends of all
axes will always be counted in the set {ny}, Vg € G, even for g binary.

1

(When g is not binary, the antipole of n, is the pole of g~ and it always

belongs to the set.) The identity has no poles.

This is the number of poles in the set {n,} in (13). Because each rotation
in G, except the identity, has now two poles, v = 2(N — 1). Not all of
these are distinct because two rotations about the same axis share the
same poles.

The number v; will henceforth be used for the number of dis-
tinct poles in a conjugate set, with the antipoles of binary
rotations counting as poles in that set.

Call C; the cyclic group of order n; that contains g;. Form the coset
expansion G = Ele 0 C;. The coset representatives o, all generate
distinct poles o, ny,, whence p = v;. From the coset expansion,
Vi|Ci|=|G|=N = vin, =N = Vi:N/ni.

(13)

(16)
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Number of rotations
that leave invariant
the set conjugate to

ngi

Condition to
determine P and the
n;

Auxiliary condition

Determination of P
Values of P

DERIVATION OF THE PROPER POINT GROUPS

ng, is the pole of C; of order n;. Subtracting the identity, the number of
rotations that leave this pole invariant is n; — 1. There are v; distinct
poles in the set, whence the number sought is
The total number v of poles given in (14) is the number obtained in
equation (17), added up over all the P systems of conjugated poles:

P P
Q(N_l):Zile(l_n%) = Zz’=1n%:P_2+%'
N > 2, n; > 2 (otherwise G, or C; C G, contain only F, which gives no
poles). Therefore N > n; > 2.
For n; > 2 equation (18) gives P < 4 — %. For N > n; it gives P > 2.
From (20), P =2or P = 3. (P =0 for N = 1 is also obviously possible.)

§ 6-2

2 Derivation of the proper point groups

Objective

Description of
Table 6.1

The table

To obtain from the conditions (18) to (21) all the possible proper point
groups, determining for each of them the number of systems of conjugate
poles and the order and number of poles in each system.

The column headed P gives conditions (21) and the summation in the
second column is (18). For P = 0, the entry in the column headed N
follows. For P = 2, (18) is written in the second column and leads to
the solutions for ny and ngy listed. The entry in the column N follows
from (19). For P = 3, see the note at the foot of the table, which leads
to the conditions for ni, ne, and ng displayed as a subheading in the
table. Given ny and ng from these conditions, (18) is written in the
second column and, from this relation, N is derived.

Table 6.1
P

Zi:l%: vi = N/n;
P P—-2+ % ny N9 ns N v1 vy vz Group
0 1 Ci

1 1 _ 2
2 L+l-2 N N >2 1 1 Cy

2 2o0r3 >no

3 leg 2 9 9 ¥ een § & 2 Dny2
3 —=t+%x 2 3 3 12 6 4 4 T
3 e=stxn 2 3 4 24 12 8 6 O
3 e=5tr 2 3 5 60 30 20 12 I

n;: order of a rotation, angle i—” (See 16.)

v;: number of poles in a system of conjugate poles of order n;. (See 15.)
If the axis is bilateral (see 4.23) half of these poles will be antipoles. For
binary rotations the set may consist entirely of poles or of antipoles but
for bilateral-binaries (see 4.24) both types will appear in equal numbers.
N: group order.

P: total number of systems of conjugated poles in the group. P = 2 or
P =3. (See 21.)

Auxiliary condition:

N >n; > 2. (See 19.)

The case P = 3 (see 18):

n%—i—n%—l—n%:l—i—%énl:ngzng:?) (impossible) =

choose ny = 2, ny > ny, ng > ng (conventionally) =

1 1 1, 2 : .
st =3tv = no = ng = 4 (impossible) = ns =2 or 3.
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§6-3 POINT-GROUP DERIVATION

3 Description of the proper point groups

Cyclic groups C,, (order n > 1)

Number of systems of Two (except for n = 1, when this number is zero). (22)
conjugate poles
First system One pole of order n, corresponding to the rotation C;F. (23)
Second system One pole of order n, corresponding to the rotation C, . These two

systems are not conjugate because the only rotation that will take a

pole into its antipole is a binary rotation perpendicular to the axis,

which does not belong to the group. (24)
Invariant subgroups For n even, C, /5. (Rule used: all the poles of an invariant subgroup

must be interchanged by the operations of the group. The operations of

C,, leave identically invariant the poles of C,, /5.) (25)
Dihedral groups D, (order 2n, n > 2)
Number of systems of  Three. (26)
conjugate poles
First system n poles of order two (binary) perpendicular to C,. (27)
Second system n poles of order two (binary) perpendicular to C,. (28)
Third system Two poles of order n. They correspond to the rotations C;f and C,,, in

the same system because they are conjugated by any of the binaries. (29)
n odd The first and second sets correspond to poles and antipoles, respectively.

They are not conjugate because Cy does not belong to the subgroup C,,.  (30)

n even The first and second sets correspond to binaries C% and CY, respectively,
separated by m/n. (These two sets are not conjugate because the rota-
tion by 7/n does not belong to the subgroup C,.) Each set contains
n/2 poles and n/2 antipoles.

Invariant subgroups C,, and, for n even, D,, /5. If n/2 is even the process can be continued. (32)
Tetrahedral group T (order 12)
Number of systems of  Three. (33)
conjugate poles
First system Six binary poles (at the centres of the six tetrahedron edges) correspond-

ing to three orthogonal axes. (34)
Second system Four poles of rotations C’;r . Because they must interchange the binaries

(which otherwise would not all belong to one conjugate set) they must

be at the four vertices of the tetrahedron. (35)
Third system Four poles of rotations C5 , antipoles of the above, at the centres of the

four tetrahedral faces. They are not in the same set as the Cj , because

there are no binary axes perpendicular to the three-fold axes. (36)
Invariant subgroups Ds. (Reason: the six binary poles, which correspond to this subgroup,

are interchanged by all the other operations of the group.) (37)
Octahedral group O (order 24)
Number of systems of  Three. (38)
conjugate poles
First system Six four-fold poles corresponding to three orthogonal axes. (Centres of

the six cube faces). (39)
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Second system

IMPROPER GROUPS: GENERAL STRUCTURE

Eight poles of rotations Cj and Cj; at the eight vertices of the cube.

§ 6-4

The corresponding rotations interchange the above poles. (40)
Third system Twelve poles of six binary rotations. These poles are at the centres of

the twelve cubic edges. The corresponding rotations interchange C’; and

(5, thus justifying their belonging to the same system. (41)
Invariant subgroups T (because it is of index two) and Dy (for the same reason as given for

T). (42)
Icosahedral group I (order 60)
Number of systems of ~ Three. (43)
conjugate poles
First system Twelve five-fold poles at the twelve vertices of the icosahedron (centres

of the twelve faces of the dodecahedron). (44)
Second system Twenty three-fold poles at the centres of the twenty triangular faces of

the icosahedron (twenty vertices of the dodecahedron). (45)
Third system Thirty binary poles at the mid-points of the thirty edges of the icosa-

hedron (thirty edges of the dodecahedron). (46)
Invariant subgroups None, the icosahedral group is the only simple proper point group. (See

2.18.) (47)
4 Improper groups: general structure
Definitions Improper group G of proper operations {h} and improper operations

{u}. The product of two improper operations is always proper. (48)
{h}=HCG Because hy, by, = hp. (49)
u = sh, Yu, one se{u} = stefu} = ss'ueH = u=shVu = {u} =sH. (50)

s € {u}, some h
Halving subgroup

General structure

Classification of
improper groups
Improper groups with
inversion

Improper groups
without inversion
Generation of
improper groups G’
from a proper group
G

Possible semidirect
product form of
improper groups
without inversion

The set of proper operations of G is a group of order |H| = |G|/2
(index 2) and therefore invariant. (See 2.21.)

G = H @ sH, for some improper operation s € G. H<G, |H| = |G|/2.
G = H @ ih/H, for some proper operation h’ not necessarily in H.

(i) e H = G=H®iH = 1€ G.

(i) h ¢ H = G=H®iWH = i1 ¢ G.

54 G=H®iH=H®C,;,,C,=FE®i.

55 G=HoiWH, W &aG.

(i) Groups with inversion: form G' = G ® C;, VG.

(ii) Groups without inversion: find all halving subgroups H of G.
Write G =H®hH, h & H, b/ proper, h' € G. H<QG.
Write G' = H®ih'H. H<G.

If, in (60), E @ik’ =S (a group), then @ = H® S. H<G.

ot
—

N N N S S
ot
w
D OO —

5

NS

[ Ea
U~

at
(=]

5 Improper groups with inversion

Generated from cyclic groups C,

General form

G'=C,®C,.

(62)
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§ 66 POINT-GROUP DERIVATION

n even, oy, € G’ neven = (0,e€C, = iCy=0,€G = C,0C;=C,.

List: Cap, Cuan, Cen, Csn, Cion.
n odd C;i:CIC2Uh:C£r+WUh:C;_2J on = Cx(,_9\0n
= (05" 2o = (55,72
Gl = Cn ®Cz = SQn-
List: Sy = C;, Se, S10, S14, S1s.

Generated from dihedral groups D,,

General form G' =D, ®C,.

n even, oy, € G’ neven = (0,e€C, = iCy=0,€G = D,®C;=D,.

List: Doy, Dan, Dep, Dsn, Dion-

n odd iC,=0,€D, = D,®C;=Dyu.
List: D34, D54, D74, Dgg.

Generated from the cubic groups O, T

AAA/—\/—\
~
=

2 =222

General form CoecO0,T = iCy=0,€CG. (73)
From O O ®C; =0y, (74)
From T T®C; =Ty. (75)
Generated from the icosahedral group I

General form Crel = iCy=o0,€qG. (76)
From 1 I®C; =1,. (77)

6 Improper groups without inversion

Generated from cyclic groups C,,

Halving subgroups n even: C, /5. n odd: no halving subgroup exists.

n even, n/2 odd CogCphpp = Cu=0C,p00CC,n = C,=C,n®Cy.
59, 60|79 G'=C,®Cs,Cs=E®on, = G =Cyp.
List: Cyp, = Cg, Csp, Csn, Crp, Cop.

n even, n/2 even Cité¢C,pn = C,=C,aCHC,pm.

60/82;4.34 Q' =Cp®iCl Cpiy=Crp®Sy* V7 C, =S8,

List: S4, Ss, S12, S16, S20-

Generated from dihedral groups D,,

-3
0.¢]

0
o ©

AN N N NN /N /S
oo 0o
[N
NSAGENL NI N

o)
i~

Halving subgroups Vn: Cp. n even: Dy, /s.

vn CleD,,C,1C, = D,=C,dC,C,.
iCh=0, = G=C,0iC),C,=C,®0,C,, =
G'=C,PpCs=C,y; Cs = Ed 0y
List: Cay, Csy, Cuy, Csy, Cou, Cryy Csy, Couy Crow.

n even, n/2 odd CoeD,,C2¢Dyyy = Dp=DyHudCyD, ).
1Co =0, = GIZDn/QEBiCQDn/QZDn/QEBO'th/Q =
G'=D,2,®Cs=Dy/s; Cs = ED oy,
List: Dsp, Dsp, D7y, Doy,

n even, n/2 even C,eD,,C;1C, = D,=Dg,;»®dC;D,),.
iCéZO’d = G/:Dn/Q@iCéDn/z:Dn/QeaUan/Q =
G = Dn/g ®Cs = Dn/2,d; C;=Edoy.
List: Doy, D44, Dga, Dsd, Dioa-

oo
at

co 00 00 o
© 00 ~J O

e
(e}

AAAAAAAAAAAA/-\
© ©
N =

N AN AN NG AN N NN NI AN N2
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3

Ne)
w
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34



THE POINT-GROUP STRUCTURE

Generated from the cubic groups O, T

§ 67

Halving subgroups For O: T. For T: none. (98)
From O C,e0,C0,1C = O=TaC,T. (99)
iC=04=>0=T&iC,T=T®5yT=T@®C, =Ty, Cs = EGoy (100)
From T None. (101)
Generated from the icosahedral group I
Halving subgroups None. (102)
From I None. (103)
7 Summary. The point-group structure
Proper point groups Improper point groups
With inversion Without inversion
Cyclic groups
C, Ci®C,=C;
C, Co®C; =Cyy Cin=0C,
Cs C;®C, =8¢
Cy Ci®C; =Cy Sa
Cs C;®C; =Sy
Cs Cs®C; = Cgy, C;®Cs=Cs3p
C7 C7 X Ci = 814
Cs Cs®C; = Cgy Ss
Cy Cy®C; =833
Cio Cio®C; =Cyop Cs®Cs =Csp,
(Ci2) Si2
Dihedral groups
D, D; ® C; = Dy, Co®C, = Cy,
D3 D3 ® C; = D3qg C;®Cs =Csy
Dy D, ® C; =Dy, Ci®C,s =Cyy
Dy Dy ® C,; = Dgyqg
Ds D5 ® C; = Dsq Cs ®Cs =Csy
D¢ D¢ ® C; = D¢y, Cs ® Cs = Cg,
D¢ D3 ® C; = Dg3p,
Dy D7 ® C; = Dryg Cr®C,=Cr,
Dy Ds ® C; = Dg;y, Cs® C, = Cgy,
Dy D,®C, =Dy
Dy Dy ® C; =Dyq Cy ® C, = Cy,
Dyg Do ® C; = Dy Cio®C; = Cypo
D10 D5 & Cs = D5h
(Di12) D¢ ® Cs = Dggq
(D) Ds ® C, = Dgg
Cubic groups
(0] O0®C; =0y TeC, =Ty
T TC, =T,

Icosahedral group

I I®C1:Ih
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8§ 6-7 POINT-GROUP DERIVATION

Notes The group C; which appears in the third column, headed ‘Without inversion’,
is given by C; = E ® 0,, r = h,v, or d. This label must coincide with that of
the group which appears as the result of the product stated.

Groups listed in brackets are not treated in the tables. On the other hand, for
simplicity, the groups Sig, S20, D7n, Don, D104, Crh, Cop, which are given in
the tables, are not listed in the above scheme.

Bibliographical note

The theory used in § 4 is due to Zassenhaus (1949). See also Burckhardt (1947) and Coxeter and Moser
(1984). For § 4 consult Weyl (1952) and Altmann (1977). This reference also covers much of the latter
parts of this chapter. For a discussion of poles consult Altmann (1986).
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2

Direct product, semidirect product, and coset
expansion forms of the point groups

Group Direct product form Semidirect product Coset expansion
form

Proper cyclic
groups

C,

C,

Cs

Cy CodCyCy
Cs

Cs C3® Csy

Cr

Csg C,®CsCy
Co

Cio C5 ®Cy

Improper cyclic
groups C;

Ci

Cs

Improper cyclic
groups S,

Sy

Ss C;®C;
Ss

S1o Cs;®C;
Si2

Si4 C;®C;
Si6

Sig Cy® Gy
Sa0

Dihedral groups D,

D, C,® CIQ

D, Cs; ® Cy

D4 C4®C/25D2®C/2/
Ds C;®C

Ds Cs ® Ch, D3 ® CY
D~ C; ® C,

Dg C8®C/2)D4®Cl2/
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§7 POINT GROUPS IN PRODUCT FORMS

Group Direct product form Semidirect product Coset expansion
form

Dihedral groups D,,

(cont.)

Dy Co® Cy

Do Cio®C5 Ds®CY

The groups D,

Dy, D, ®C;s, Coy®Cy

D3h DS & CS7 CSU & Cs

Dy Ds®C;s, Cu®@Cy

D5, D5 ®Cs, G5, ®@Cs

Depn D ® C; 5, Coo ®Cy

D7h D7 & CS7 C?v & Cs

| DIYA Ds® C; 5, Csy ®Cy

D9h D9 & CS7 CQU o2y Cs

Dion Dy ® Cj s, Cioy ® Cs

Dooh Coov oY Ci,s

The groups D4

D2d D2 ® Cs
D3d Dg ® Cl

Dyq D, ® Cq
D5d D5 ® Cl

D6d D6 ® Cs
Drq D;®C;

D8d D8 ® Cs
ng D9 02y CL

Dioa Do ® Cs

The groups C,,

CQU C2 & Cs

C3v CB ® Cs
C4v C4 ® Cs
C5v C5 ® Cs
CGU C6 ® Cs
C?v C? ® Cs
CSU CS ® Cs
CQ'U CQ ® Cs
ClOv ClO ® Cs
Coov Coo ® Cs
The groups C,,,,

Cay, C,®Ci

CBh C3 & Cs

Cun Ci®C;s

CSh CS &® Cs

Csh, Cs ®C; 6

C7h C? & Cs

Csn Cs®C; s

CQh C9 & Cs

Cion Cio®C,;

38



POINT GROUPS IN PRODUCT FORMS §7

Group Direct product form Semidirect product Coset expansion
form

The octahedral and
tetrahedral groups

¢} T®C,
T D, ® Cj
Oh O®Cz
Th T®Cz
T, ToC,

The icosahedral groups

I
I I® Cz
Notes The symbol C; ; means that either C; or C, may be used. The complete defini-

tion of the group C; that appears in the products for Dy, and Cs, must be
obtained from Subsection (1) of their respective tables. For all other products
the group C; is given by C; = F @ o,., = h, v, or d. This label must coincide
with that of the group which is the result of the product stated. The group Cs is
E®Cy, with Cy along z. When this group is listed as C}, or CY, the binary axis is
perpendicular to z, the prime and double prime indicating different orientations
as defined in 4.10 and 4.11. C% in the group Cj is an axis along the diagonal of
the three binary rotations in Ds.

Other product forms are listed in the tables for the individual groups.
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The crystallographic point groups

Schonflies International Schonflies International
Full Short Full Short
Proper cyclic The groups Dy,
groups
C, 1 1
CQ 2 2 Dgh (Vh) %%% mmm
Cy 4 4 Dy 422 4/mmm
Co 6 6 Degp, 522 6/mmm
Improper cyclic The groups Dyq
groups C;, C
Ci (Sg) T T ng (Vd) ZQm ZQm
C, (Cip) m m Dsy 32 3m
Improper cyclic The groups C,,
groups S,
Sy 4 4 Co, mma2 mm2
86 (C3i) g g Cgv 3m 3m
Cuo dmm 4dmm
Ceo 6mm 6mm
Dihedral groups D, The groups C,p,
D, (V) 222 222 Cap, 2 2/m
Ds; 32 32 Csy, 6 6
D, 422 422 Cuy, 4 4/m
Dg 622 622 Cen — 6/m
The octahedral and
tetrahedral groups
(0 432 432
T 23 23
0, 232 m3m
Th %g m3
T, 43m 43m
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9

Group chains

1 Definitions and structure of the tables

Group chains

Invariance

A set of groups suchas A D B> C D D.

In any of these relations a subgroup may or may not be an invariant
subgroup of its supergroup.

Possible difficulties in group chains, for G D H

Change of notation

Change of setting

Subduction

Difficulties in
subduction

An operation of G may change name when regarded as an operation of
H.

The subgroup H might not appear in the standard setting used in the
tables.

Given G, H C G, G = {G(g)}, Vg € G, the subduced representation or
restriction of G down to H is the set {G(g)}, Vg € H.

(i) If G is irreducible it does not follow that the subduced representation
is irreducible. (This difficulty is an inherent one and it is not possible
to plan the tables in order to avoid it.) If the subduced representation
from G is reducible the tables have been constructed so that whenever
possible this representation is already reduced. (It is not always poss-
ible to achieve this because of the competing claims of two or more
representations of H.) When the representation is not already reduced
a change of bases arises.

(ii) If the subduced representation is irreducible it does not follow that it
is always identical with one of the irreducible representations tabulated
for H. (A similarity might be entailed). In this case it means that
in going from G to H a change of bases appears for some of the
representations. The tables have been constructed so as to avoid this
situation whenever possible. (This cannot always be achieved because
of the competing claims of two or more representations of G.)

(iii) For spinor representations (half-integral angular momenta) subduc-
tion might fail in the sense that the subduced representation does not
satisfy the conservation of the characters as class functions. In this case
there is a subduction failure. This can only happen in the cubic and
icosahedral groups where several isomorphic subgroups (groups of the
same name) appear in different settings. (See Herzig 1984.)

Construction of the tables

Objective

To avoid as far as possible the difficulties listed above.
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GROUP CHAINS

2 Description of the group-chain graphs

Description

Note: Cs,

Subduction

The graphs

Each of the 75 groups listed in the tables belongs to one or more group
chains. These are displayed in twelve graphs. The groups are displayed
in the graphs in columns that follow the conventional order used in the
tables, except that C; (Sz) is listed under S,, and C; (Cyp) under C,p.
The vertical scale (which uses a logarithmic scale base 2) gives the order
of the groups.

The group Cs, is given in the A setting in all graphs (see F 51A4).
The changes required for the B setting (see F' 51B) are as follows.
Graphs 1, 4. D3, D Cs,: change of setting.
Graphs 1, 9, 11, 12. Dg3g4 D Cs,: no change of setting,

change of notation,

(0ai — 0wy, 1 =1,2,3),

no change of bases.
Cgy D Cg3,: change of notation,

(04i — owi, 1 =1,2,3),

change of basis.
Cy, D Cgs,: change of setting.

Graphs 1, 6.

Graphs 4, 9.

Possible changes of bases (see 6, 7) or failures of subduction (8) are coded
in the graphs. When the change of bases is so coded, it normally happens
to only one or two of the representations. For simplicity, when there is
a change of setting, changes of notation or bases are not recorded.

They are listed below. The first line gives the group that is the head of
all the group chains in the graph and the second gives the graph number.

(14)

(15)

Group-chain head
Graph number

D¢, D7, Dsn Don Dion Deg Drg Dgg
1 2 3 4 5 6 7 8 9

Dgqs Dioa On
10 11

I,
12

3 An index of the groups in the graphs

Group Part 2 table Graphs where the group appears
Proper cyclic

groups C,

C, T1 1-12

C. T2 1-12

C; T3 1,4,6,9,11, 12
Cy T4 3,8, 11

Cs TS5 5, 10, 12

Cs T6 1,6

C, T7 2,7

Csg T8 3,8

Co T9 4,9

Cio T 10 5, 10

Improper cyclic

groups C;, Cq

C; T 11 1,3,5,7,09, 11, 12
C; T 12 1-12
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INDEX OF THE GROUPS IN THE GRAPHS

Group Part 2 table Graphs where the group appears
Improper cyclic

groups S,

S, T 13 3,6, 10, 11
Se T 14 1,9, 11, 12
Sg T 15 3

S1o T 16 5,12

S12 T 17 6

S14 T 18 7

S T19 8

Sig T 20 9

Sao T 21 10
Dihedral groups D,

D, T 22 1,3,5,6,8, 10, 11, 12
Ds T 23 1,4,6,9,11, 12
D, T 24 3,8, 11

Ds T 25 5,10, 12
Dg T 26 1,6

D, T 27 2,7

Dy T 28 3,8

Dy T 29 4,9

Do T 30 5, 10

The groups Dy

Do, T 31 1,3,5, 11, 12
D3y, T 32 1,4

Dy, T 33 3, 11

D5y, T 34 5

Degp, T 35 1

D7, T 36 2

Dgy, T 37 3

Dy, T 38 4

Dion T 39 5

Deoon T 40

The groups D4

Doy T 41 3,6, 10, 11
D3y T 42 1,9, 11, 12
Dygy T 43 3

Dsy T 44 5,12

Dgy T 45 6

D~y T 46 7

Dgy T 47 8

Dyy T 48 9

Digg T 49 10
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§9-3 GROUP CHAINS

Group Part 2 table Graphs where the group appears
The groups C,,

Csy, T 50 1-6, 8, 10, 11, 12
Cs, T 51 1,4,6,9, 11, 12
Cuy T 52 3,8, 11

Cso T 53 5, 10, 12

Ceo T 54 1,6

Cr, T 55 2,7

Cs, T 56 3,8

Co, T 57 4,9

Ciov T 58 5, 10

Cocv T 59

The groups C,p,

Copn T 60 1,3,5,7,9,11, 12
Cspn T 61 1,4

Cun T 62 3,11

Csh T 63 5

Cen T 64 1

Cn T 65 2

Csy, T 66 3

Con T 67 4

Cion T 68 5

The octahedral and

tetrahedral groups

(0) T 69 11

T T 70 11, 12

(0% T71 11

Ty, T 72 11, 12

Ty T 73 11

The icosahedral

groups

1 T 74 12

I, T75 12

4 Examples

Graph 3 Dgj, D Cgy, D Cyyy D Cy, D Cy D Cy.
Dg, D Cg, DSs D Cy D Cy D Cy.

5 The graphs

They are shown below, on pages 45 to 50.
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THE GRAPHS

Order

40
36
32
28
24

20
18

16
14
12

Lttt

—
A U AN 00O

C S D

n n n

————— Change of setting
---------- Change of notation
———- Subduction: basis changes

ny

Cnh

Invariant

L e e

|

Order

36
32

28
24
20
18
16
14
12

I I I

. —t
H U AN 00O

————— Change of setting
---------- Change of notation
———~ Subduction: basis changes

D7

G

G

Invariant

|

§ 9-5
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GROUP CHAINS

Order
40

32
28

20
18

16
14
12

—
S U OV 00O

i S D, D,

n n
————— Change of setting
---------- Change of notation
———~ Subduction: basis changes

Gan

Invariant

|

Order

40
36
32

28

Ll

20
18

16
14
12

—
H U AN 00O
111

L1

w

_____ Change of setting
.......... Change of notation
———~ Subduction: basis changes

e e et
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THE GRAPHS

Order

40
36
32
28
24

20
18
16
14
12

Lt

N

oy
S U OV 00O

C S D

n n n
————— Change of setting

---------- Change of notation
———~— Subduction: basis changes

G

Gan

Invariant

L e e

w

C, S, D,
_____ Change of setting

---------- Change of notation
———- Subduction: basis changes

o

Invariant

Lot rri

§ 9-5
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§ 9-5

GROUP CHAINS

&

n

————— Change of setting

S, D, D, Dy G Gan

Invariant

---------- Change of notation

———- Subduction: basis changes

C2 ///Ci 5
C//camph 7

.\.

c

LLE rrr et

LEL i

A

C

n

_____ G
.......... C

———~ Subduction: basis changes

Sn Dn 1%h Dnd Cnv Cnh

hange of setting
hange of notation

Invariant

4v

Graph 8

PLLE e i

|
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THE GRAPHS

Order

36
32
28
24
20
18
16
14
12

—
H wn O\ oo OoO

NI

Cn Sn Dn Dnh Dnd Cnv Cnh
————— Change of setting D
—— Change of notation
———~ Subduction: basis changes

Invariant

o

R = T

w

C, S, D, D, D, C .,

————— Change of setting Doy
---------- Change of notation G
———~ Subduction: basis changes

Invariant

Graph 10

L 111l

§ 9-5
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GROUP CHAINS

Order C S D

48= _ _ Change of setting
4(): .......... Change of notation
36 ———~ Subduction: basis changes

] ™ Subduction may fail

24—
20—
18
16—
14—

10 =

]

nh

Dy

Invariant

[Order C,; Sn D"
120
5 ————— Change of setting

---------- Change of notation
60 ———~- Subduction: basis changes
meense SUbduction may fail

24—
20 —
18—
16—
14—
12

7,

nh

Invariant

Graph 12

[

50
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Double groups. Spinor and projective

representations

1 The double group

Definitions
G Group of operations g1 = F, go2,...,9n- (1)
E An operation (which may be regarded as a rotation by 27) which com-

mutes with all g € G and such that EE = E. (2)
Ag gzdefﬁg:ggv VQGG (3)
G The group of order 2N of operations g, g, Vg € G. (4)
Warning G is not a subgroup of G. The multiplication rules in G are not pre-

served in G:

9i 9 = g& in G does not entail g; g; = gx in G. (5)
= Equality in G, as in g; g; = gk. (6)
~ Equality in é, asin g; g; ~ gi or ¢; g; =~ gr. (Both results are possible.) (7)
g ! Inverse in G. (8)
g™t Inverse in G. 9)
gi € gj Conjugation in G. (10)
9i € gj Conjugation in G. (11)
C(gi) Class of g; in G. (12)
Clg:) Class of g; in G. (13)
Irregular operations Bilateral-binary rotations (see 4.24) and one of a pair of orthogonal

mirrors. (14)
Regular operations All operations of G which are not irregular. (15)
Parametrization. See § 3-4. Notice that i> = E. (16)
The inversion
Class structure (Opechowski's theorem)
All operations 9i € gj = 9 € gj; 9 € 7j = 9i € gj. (17)
Irregular operations gi € gj = g; €g; and g; € g;.
OHly g; C gj = gi c gj and gi c g;- (18)
Regular operations For each class C(g;) in @ there are two classes C(g;) and C(g;) in G.

(See 17.) (19)
Irregular operations For each class C(g;) in G there is only one class 5(gl) = 5(@) (See
only 18.) (20)




§ 10-2

DOUBLE GROUPS. PROJECTIVES

Irreducible representations

Vector
representations

Spinor
representations

Number of irreducible
spinor representations

Dimensions

Example

They are the irreducible representations of a single group G.

Given a group G, its double group G contains all the vector representa-
tions of G plus a number of additional irreducible representations which
are called spinor representations. They are also called double-group
representations. They correspond to half-integral angular momenta.

It is equal to the number of regular classes of G.

See (40) below.

Consider the group Dg, to be abbreviated as G. Although all the ordin-
ary (vector) representations of this group are one-dimensional there is
one two-dimensional spinor representation F/p, the matrices of which
will be denoted G(g), Vg € G.

T222 Cy Cy =E.

T 227  G(Co)CG(Con) = [_i Q} [‘5 ﬂ - [_é _2] — G(B).

2 Projective representations

Warning

Motivation

The user of these tables need not be concerned with projective
representations at all and may skip this section.

The double-group
approach

The projective
representation
approach

It is a property of the spinor representation of Dy (order 4) illustrated
in (25) that the set of four matrices for the four operations of Dy does
not close, since the matrix on (R 25) does not belong to the set given in
T 22.7. In the double-group method the group is doubled to order 8, the
matrix on (R 25) is assigned to the artificial operation E and the new
set of eight matrices closes. Advantage: no further theory is necessary,
the spinor representations being merely vector representations of the
double group. Disadvantage: the group is doubled, which increases the
work. It is also inconvenient that the multiplication rules of the single
group and its class structure are not preserved in the double group.
More importantly, the multiplication rules of the double group are not
uniquely defined.

The group is not altered in any way at all, but a new type of representa-
tion (projective representation) is defined the matrices of which do not
close. (R 24) will now be E. The matrix on (R 25), which does not
belong to the set of four matrices of Do, will be written as the matrix of
FE multiplied by a numerical factor, which is called a projective factor.
Advantages: (i) The group, its multiplication rules, and its class struc-
ture are not altered at all. (ii) The mathematical theory of projective
representations is very precise and powerful, thus easily providing results
which are obscure within the double-group framework. (iii) The work
is quicker because there are fewer elements to use in the group. Dis-
advantages: one has to learn projective representation theory. However:
if the results of projective representation theory are accepted,
the user of spinor representations can work with them exactly
as if they were vector representations. It is enough to know
that when two matrices are multiplied the matrix that appears
is multiplied by a numerical factor.

(27)
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PROJECTIVE REPRESENTATIONS

§ 10-2

Definitions
Projective Given a group G of elements g, (|G| in number), it is a set of |G| matrices
representation G(g) that satisfy the relations

Projective factors

G(9i) G(g;) = l9i 951G (9 95): Y91, 95 € G-

The complex numbers [g;, g;], |G|? in number, are called projective fac-
tors. If they are all equal to unity, the above equation defines a vector
(ordinary) representation G(g). With the conventions used in this book
all projective factors must be square roots of unity.

Factor system The set of all projective factors for G, |G| in number. (30
Associativity [9i> 931 [9i 95 9] = 9 95 9] [95> 9n]- (31)
conditions
Standardization [E,E]l=[E, 9] =l9:, E] =1, Vg; € G. (32)
condition
Normalization l9i, 91 lgi- 951" = 1, Vgi,9; € G. (33)
condition
Inverse condition l9:, 3] = [Gi,9i], @i =aet 9; ', Vgi € G. (34)
Unitary condition Glg:)T G(g:) = Glg:) Glgn)T = 1. (35)
Notes The associativity and inverse conditions are valid for all factor systems.

All the systems used in this book have been chosen standard-

ized and normalized. (36)
Properties
Characters They are not necessarily class functions but the conventions given in

this book for choosing poles of operations have been so designed that

for all groups treated the characters are class functions and stay as class

functions even when subduction is used, except in a few unavoidable

cases where warnings to this effect are given. (Subduction in double

groups is often extremely chancy because the same difficulty underlies

the work but it is then not easy to control.) (37)
Orthogonality All the relations given for vector representations are valid for the unit-
relations and others ary projective representations with normalized and standardized factor

systems and the pole conventions used in this book, except that the

number of irreducible projectives is not equal to the number of classes

in the group. (See next item.) Thus |I(G)], which must be understood

as the number of irreducible projective representations in G for the given

factor system, is not |C(G)] as in (2.74). With this proviso the condition

for the dimensions (2.75) can still be used. (See 40 below.) (38)
Number of spinor This is the number that we need of the irreducible projective representa-
representations tions in a group and it is equal to the number of regular classes in the

group. (39)
Dimensions The sum of the squares of the dimensions of all the spinor representations

equals the order |G| of the single group G. This rule is valid in this form

also for a double group G. (40)
Projection operators The expressions given in (2.86), (2.87), and (2.90) to (2.92), are all valid

with the conditions stated here. (41)

Bibliographical note

More details about double-group theory as presented here may be found in Altmann (1986). All the
required properties of projective representations are given in Altmann (1977, 1986).
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The matrices of SU(2) and SU’(2)

1 Definitions
Special matrices Also called unimodular. Their determinant is +1. (1)
SU(2) The group of all 2 x 2 special unitary matrices. (2)
SU'(2) The group of all 2 X 2 unitary matrices with determinant +1. (3)
2 Form of the matrices
A e SU(2) A= {_Z* 2* ] , for a, b complex numbers and aa* + bb* = 1. (4)
A’ e SU'(2) Either A’ = A as defined above, or A’ = [Z* _2* } , for a, b complex

and aa* 4+ bb* = 1. (5)
3 Relation between SU(2) and SU’(2) to the rotation group
Definitions
SO(3) The continuous group of all proper rotations of a sphere with a fixed

centre. (6)
0(3) The continuous group of all proper and improper rotations of a sphere

with a fixed centre.

0(3) =S0(3) ® C;. (7)
Relation between SO(3) and SU(2)
g = R(¢n) € SO(3); +A—g; a:cos%—inz sin%,b:—(ny—i—inx) sin%. (8)
Cayley—Klein
parameters a, b
Representation of SU(2) forms a (vector) representation of the double group of SO(3), with
the double group of the conventions used in this book, as follows:
SO(3) +A— g, —A— 7. (9)
Projective The mapping +A — ¢ forms a projective representation of SO(3), with
representation of the conventions used in this book. (10)
SO(3)
Relation between O(3), SU(2), and SU’(2)
i€ 0(3) The conventional (Pauli gauge) SU(2) matrix that maps onto i is the

unit matrix:

B (1)] i (11)
g =1ige€0(3) With the above convention if +A4 +— g, then +A4 — ¢'. (12)
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Representation of the
double group of O(3)

Projective
representation of
0(3)

Note

SU(2), SU’(2), AND THE ROTATION GROUP

The mapping +A — g, +4A — ¢, —A — g, —A — ¢’ forms a (vector)
representation of the double group of SO(3), with the conventions used
in this book.

The mapping +A — ¢, +A — ¢’ forms a projective representation of
O(3), with the conventions used in this book.

In the scheme here described, which agrees with the one universally used
in the literature, the matrices of SU’(2) are merely those of SU(2) used
twice, to represent both the proper and the improper operations.

The bilateral-binary rotation matrices. (See 4.24)

§11-3

R(mx), R(wy), R(Wz)

The Pauli matrices

R(mx) = [_? 5] R(my) = ﬁ H . R(rz) = [ . ?] .
In SO(3) both the matrices given above and their negatives represent the
operations stated. The signs chosen for the matrices listed above are such
that, with the conventions used in this book, they form a representation
of the double group of Dy when the negatives of the the matrices shown
are used for the tilde operations. (They also form, on their own, a
projective representation of Dy.) Notice that i R(7 n) is the Pauli matrix

o, (see 18 below).

Oy, Oy, O

They are the following SU’(2) matrices, in the Condon and Shortley
convention used in this book:

o0 1] L _fo -] _ _[t o
=11 o %" |i o] %270 -1]

Bibliographical note

Most of the results in this chapter may be obtained from Altmann (1986).
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The continuous groups. Rotations, their
matrices, and the irreducible representations of

O(3)

1 The continuous groups

COO’U

Dooh: Coov & Cz

SO(3)
0(3)=S0(3) ® C;

The group of the rectangular cone. A continuous axis of rotation at the
cone axis and an infinite number of symmetry planes through this axis. (1)

The group of the rectangular cylinder. A continuous axis of rotation at
the cylinder axis, an infinite number of symmetry planes through this
axis, and an infinite number of binary axes perpendicular to this axis,
lying on a symmetry plane o normal to the axis. (2)

The group of proper rotations of the sphere with fixed centre. (3)

The group of proper and improper rotations of the sphere with fixed
centre. (4)

2 Action of a rotation on a vector

R(¢m)

R(¢mn)r =cos¢pr+sing(nxr)+ (1 —cos¢) (n-r)n. (5)

3 Rotation matrices

Notation
(a,b,...,z| A row basis of elements a, b, ...,z to be transformed. (6)
la,b,...,z2) A column basis of elements a,b, ...,z to be transformed. (7
(a,b,.... 7| A row basis of elements a, b, . . ., Z obtained from a, b, . . . , z after an active
transformation. (8)
|a,b,...,Z2) A column basis of elements @, b, ..., Z, obtained from a,b, ..., z after an
active transformation. 9)
Transformation for (a,b,....z| ={a,b,...,z| A, (10)
matrix A |a,b,...,2) = Ala,b,...,z2). (11)
Notes For each matrix and for each basis stated the correct one of the two rules

The matrices

(10) or (11) must be used, depending on the nature of the basis used.
(See eqns 12 to 18 below.)
See § 3-2 for the notation for rotations and axes.

R(¢z)

cosa —sina 0
§22 A= |sina cosa 0. Bases: |z,y,2), (x,y2, (ijk|. (12)
0 0 1
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IRREDUCIBLE REPRESENTATIONS OF O(3)

§ 12-4

1—2(n2 +n?) sin? g —n, sin ¢ + 2n,n, sin’ % ny sin ¢ + 2n,n, sin’ %
R(¢n) n, sin ¢ + 2n,n, sin® £ 1 —2(n? 4 n?2) sin? % —ng sin ¢ + 2nyn, sin® £ (13)
—n, sin ¢ + 2n,n, sin’ % ng sin ¢ + 2n,n, sin? % 1—2(n2 +n2) sin? %
BaseS: |:177 y’ Z)? (X7.y7 zl? (i’j’kl' (14)
a? 21/2qp b2
R(¢m) —2'2ab*  aa* —bb* 2/%a*b|, a=cos$ —in.sing, b= —(n, +in,)sing.  (15)
b*2 _21/2a*b* a*?
Basis: (Y7', Y, Y !|. (See 13.1 for the definition of the spherical harmonics.) (16)
cosacos fcosy —sinasiny —cosacosfsiny —sinacosy cosasinf
R(afx) sin v cos fcosy + cosasiny  —sinacosFsiny + cosacosy sinasin 3 (17)
—sin J cosy sin Bsin -y cos 3
Bases: |x,y, 2}, (x, ¥, 2|, (i,], k| (18)
4 The irreducible representations of O(3)
Basis and form of the representation
ul, Eigenfunctions of the z component of the angular momentum operator
in the Condon and Shortley phase convention. j > m > —j. Also
written as |jm).
The detailed form of these functions is given in 13.6, 13.26, and 13.28.  (19)
(u;7 . 7u{j| Row vector of the 2541 functions u;:, . ,u{j also written in abbreviated
form as {(u’| or <|jm>| (20)
R(¢m), R Active rotation by ¢ about axis n, abbreviated R. (21)
Form of the R(ug,...,uj_ﬂ :(ug,...,uj_ﬂR = Ru{nzz;ﬂzj W R, (22)
representation When j is integral the inverted hat on the R can be read as a straight
hat, denoting a vector (ordinary) representation. When j is half-integral
the inverted hat denotes a spinor or double-group representation. (23)
Dimension of the 27 + 1. (24)
representation
Matrix element R, ={(G+m) G —m)G+m)(G— m)!}l/2
(parameters ¢n) m—k (gx)i—m/ —kpm’ —m+k(_prk
oy ) S (25)
w G—m =BG +m—Ek)l(m —m+ k)
a=cos% —in, sing, b= —(ny +in,)sin$. (26)
iy o, o, _ . 1/2
. —m +m —m +m
Alternative form of R, = {(j & )(mf_mHg) (mlj_m+k) (j k )}
the matrix element k (27)
% aj-i—m—k:(a*)j+m'—k)bm/—m+k(_b*)k.
Choice of k k > 0. In both cases the summation over k must be extended over all
values of k for which, with the values of m’ and m chosen, the arguments
of the factorials do not become negative. (28)
Note The second form of the matrix element is preferable, from the computa-
tional point of view, because the binomial coefficients are much smaller
than the factorials. (29)
Matrix element R, =exp{—i(m'a+my)} {(G+m)(G—m)G+m) (- m)!}1/2
FEuler parameters i tm—2k BN\ s 2k+m —m 8
( D ) " Z(—l)’”m/*m( cog2i—m'+ (5) sin (5) (30)
k

jg—m' — k) G+m—=Fk)(m —m+ k) k"
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Improper rotations

ROTATIONS AND MATRICES IN O(3)

g =1iR(¢n) All improper rotations must be written in this form and an,m obtained

from the above expressions. (31)
j integral Multiply the matrix elements by (—1)7. (32)
4 half-integral Multiply the matrix elements by +1. (33)
Special cases
R(¢z) 25 R, =alt" (a*) T G (34)
(b=0)
R(¢m), m 1 z 25 RI, = ()T (35)
(a=0)
Note The above two cases cover all operations in all point groups except cubic

and icosahedral. (36)

The characters

X (9)

Formula

Improper operation
g/

Double group
operation g

The Clebsch—Gordan

series

Character of R(¢n), which is independent of n.

X (¢) =sin(j + 3o (sin§)~', ¢ #0or2m.
=2j+1, 6 =0.
:7(2]4»1)7 (;5:27r

(The value ¢ = 2 is only used in the double-group method.)
Write ¢’ = i R(¢m). Then: x7/(g') = (=1)7 x/(¢).

Use the angle ¢ for the corresponding operation g, plus 2.

-/

(W@ =@ e @t e oW, =7

W W
o

N NN AN TN /N
=W
S ©

NN AN NN N

B~
[N

Bibliographical note

Most of the results of this chapter may be obtained from Altmann (1986).
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Bases: spherical harmonics, spinors, cartesian

tensors, and the functions s, p, d, f

1 Integral angular momentum: the spherical harmonics

Spherical harmonics In the Condon and Shortley phase convention, always used in
(normalized) this book, they are given by the following expressions,
Y7 (0, ) = B (cos ) exp(ime), (1)
_ 1y 172 LHml(ne2 0 17l
R 1 1 U NPT
| integral 1=0,1,2,...; I>m>—I. (3)
Effect of inversion Y™ (0,0) = (=1)'Y(0,¢). (4)
Conjugation Y0, 0)* = (=1)™Y, (0, ). (5)
Notation Y™ =det ul, =def |Im), 1=0,1,2,...; 1>m>—l. (6)
Basis of irreducible (u, ..., ul |, also written as {|Il),...,|l, —1)| or in abbreviated notation
representation of as <\lm>| or <|lml>|. (7)
SO(3)
Normalization The basis (7) is normalized to 21 + 1. (8)
2 Half-integral angular momentum: spinors
Notation Uy, =det |SMs), 5= % mg = i%. Bases: <|sms>| (9)
Spinors j =1/2 Components of basis: |31), \%%} Basis: (|21) %%)l (10)

Transformation under  R(¢n) (|%%>|%%>| = <|%%>|%%>| {_a b*},
R(¢m) (see 11.8)

a= cosé —in, sin %, b= —(ny, +ing) sin%
. 1 1 1
Transformation under z<|%% NEED) | (|%%)|%%>I {O (1]]
inversion
Complex conjugate <\%%>*,—|é%)* )
spinor
: 11y 11vs| _ /11Ty 11\« a b
Transformation under ~ R(¢m){|33)*, =13 3)*| = (133)*. —132) [—b* a* } )
R(¢m) (see 11)
a= COS% —in, sin ;), b= —(ny +iny) sin%.
1 I -1 0
. L1y |11y = (|11 11
,.I‘I"aHSlf‘OrmatIOH under Z( 55 ,7 55 | = <|§§>*, 7‘§§>*| |: 0 1:|
inversion
Notation <‘ =135 =aet (1330133 | =det {133)° 33)°|-
Remark Notlce that the complex conjugate spinor just defined behaves exactly

like the ordinary spinor under rotations but is ungerade, whereas the
ordinary spinor is gerade.

(19)
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BASES OF THE REPRESENTATIONS

Higher order spinors: spin harmonics

Notation (\jm])l, J half-integral, j > m; > —j. Always gerade. (20)
(\jm])l., j half-integral, j > m; > —j. Always ungerade.
(See 18 and 19.) (21)
Normalization The bases (20) and (21) are normalized to 25 + 1. (22)
Note The bases <|]m]>| and (|jmj)|. transform identically under rotations,
both being bases of the same irreducible representation of SO(3). (23)
Derivation By Is coupling: (\lml>| ® <|sm5>| = <|jmj>|, s=1/2, mg=+£1/2.
In summation notation, with coefficients (Clebsch-Gordan coefficients,
see § 2—7) acting on the reducible basis on the left:
gmg) = > [lmg)sm)(mims | jm;). (24)
mp ms
Alternative notation lim;) = > [lmy)|sms)(Ismyms | jm;). (25)
mypmeg
Required couplings; Leven: [jm;) = Y Y™ [3my )13 mimg|im;) m; mitm.. (26)
. mpmg
bases functions |jm,) gerade, I—s|<j<l+s (27)
[ odd: |jmj>. = > YIMZ |%m5><l% mpms |]mJ> 5mj,mz+ms' (28)
mypms
|[jm;)® ungerade, —s| <j<l+s. (29)
Clebsch—Gordan (i) They are real. (30)
coefficients: (ii) Phase-factor convention: (I3lm, | jj) > 0. (31)
properties
The coefficients Table 13.1 The [, s coupling for s = 1/2.
Clebsch—Gordan coefficients
J M (I3 mymg \ jmg)
1/2
-z x —{u- )/(2+ 1)} /
1/2
L e
+3 1 {(0+m;+ L)@ +1)}
l+3 -4 {u-mi+ /@y
m; =my + ms
3 Relation between the bases of SO(3) and those of O(3)
SO(3): For the same half-integral j, bases <|jm]->| and <|jmj>|. may be formed
<\jmj>|, <|jmj>|. from (26) and (28) which are g and u, respectively, but span the same
(embellished bases) irreducible representation R7 of SO(3). (32)
SO(3): From (4), on the other hand, it appears that for integral j, (), the
parity of the bases is ﬁxed for each [. ThlS 1s not so. By couphng of the
(embellished bases) form (|11 H|® (133 )| and (132 H® (134 | two bases
are obtained for l = 1 Wthh are ¢ and u, mspectwely7 the second of
which is (|11), [10), |1T)|. In the same manner we can proceed for all .
We shall define bases
(ltmu)|*: g, V1 0dd; u, VI even, (33)

and such that they span identically the same representation as <|lml>|
in SO(3).

The basis (|11), |10), [1T)|" o> Sy,
(1963). The functions R, R,, R, defined in §16-5 are another example
of bases derived from (|11),]10), [1T)|"
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Subduction to point
groups

CARTESIAN TENSORS

For j half-integral, the bases <|jmj>| and (\jmj> |. belong respectively to
gerade, Rg, and ungerade, R{L, irreducible representations of O(3). For
integral j, (1), and [ even, <\lml>| and <|lml>|' belong respectively to g
and u irreducible representations of O(3). For [ odd, <|lml)| and {|imy) '
belong respectively to u and g irreducible representations of O(3).

When subducing from O(3) down to a point group G, if G is a proper
group then, whenever a basis such as <| jmj)| and <|lml>| are listed in
the table of the symmetrized bases of G, the embellished bases <| jmj>|'
and <|lml>|' also span identically the same representations but are not
listed in the tables. Notice also that in improper groups the
bases <|jmj>|. are always listed whenever they appear but, in
order to simplify the tables, the bases <|lml>|' are not so listed.
It should not be assumed that the symmetry assignment of
<|lml>|' can be derived in a simple manner from that of <|lml)|

§ 13-4

(35)

4 Cartesian tensors

Rank 0

Rank 1

Higher rank

Surface condition

Harmonicity

Rank 2

Rank 3

Warning

The scalar number 1.

The column vector |z,y, z) with x,y, z being the components of a unit
position vector. They are independent variables, not functions.

Obtained by forming symmetrized tensor products |z,y, z) ® |z, vy, 2)
in which the symmetric component zy + yx is written as xy, and the
same for the others. Such products are repeated for the higher ranks.

The condition

P2 =g g2 a2 =1,

which constrains the cartesian tensors to the surface of the unit sphere,
is used in some particular cases. (See 16.1.)

Cartesian tensors that give the spherical harmonics in cartesian form
must satisfy Laplace’s equation. This reduces the number of independent
cartesian tensors as follows:

Number of independent cartesian harmonic tensors of rank k& = 2k + 1.

22, y?, 22, 2y, yz, zz. (Only five independent harmonics.)

23,3, 23, 22y, xyz, 22?, xy?, y?z, Y22, 2%x. (Only seven independent
harmonics.)

The cartesian tensor bases transform under (12.11) as column and not
as row bases.
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5 Thes, p, d, and f functions

Function type Conventional Expression in terms of the Full cartesian
subscript of spherical harmonics in the form (72 =1)
the function Condon—Shortley convention

s Yy

P z - s v z

P y (5)" L (v Y y

» : (%) vy :

d 2T ~ ()L -y zx

d y2 (3)"* 33 + Y5 Yi vz

d z® —y? (2)' 2502 + 57 2? —y?

d zy - ()L -y zy

d 22 (Lom)1/2 yp 32— 1

f x> - (624—1”)1/2 % (Vi — v h x(52% — 1)

f y2? (45) 2L (v + vy i y(5:> = 1)

f 2(a? — ) ()17 + Y72 2(@? — )

f Yz - (%)1/2 A0 G P B Tyz

f z(a? — 1) G SR N R ) w(a? — 3y?)

f y(@® —y?) (S2)" 2L (v + vy y(3z® — %)

f 23 (167“)1/2 Yy 523 — 3z

Bibliographical note

The ungerade spinor for j = 1/2 was introduced by Altmann (1986, 1987). There are innumerable
notations for the Clebsch—Gordan coeflicients in the full rotation group; the one used agrees with Condon
and Shortley (1957) and Brink and Satchler (1968). The phase-factor condition given for the Clebsch—
Gordan coefficients is standard (see Messiah 1961). The Clebsch—Gordan coefficients tabulated in Table 1
are given by Condon and Odabagi (1980, p. 149). The coupling scheme used, although given in a more
compact notation, agrees exactly with that adopted by Pyykko and Toivonen (1983). A proof of eqn (40)
may be obtained from Altmann (1986, p. 94). Further discussion of cartesian tensors and their symmetries
may be found in Bhagavantam (1966) and Zheludev (1990).

62



14

Notation for the irreducible representations

1 The basic symbols

A

B

Singly-degenerate representation, symmetrical with respect to rotation
about the principal axis. (See 4.21.)

Singly-degenerate representation, antisymmetrical with respect to rota-
tion about the principal axis. (See 4.21.)

Either: one of a pair of singly-degenerate conjugate representations.
(These are representations in which the representative of an operation
in one representation is the complex conjugate of the representative of
the same operation in the other representation.)

Or: doubly-degenerate representation.

Triply-degenerate representation.

Either: one of a pair of doubly-degenerate conjugate representations.
(See 3.)

Or: four-fold degenerate representation.
Five-fold degenerate representation.

Six-fold degenerate representation.

U o W
- =z

~ o~ o~
~N

© 0o
—_ o — T

2 Embellishments

Left superscript 1, 2
on E or F

Subscripts 1, 2
on A or B

Subscripts

1, 2, 3, etc.

on E, T, F orH
Half-integral
subscripts on A, E,
T,Forl

Subscripts g and u
on any symbol

Primes and double
primes on any symbol

Distinguishes between two conjugate representations.

Whenever the distinction is possible, the left superscript 1 denotes the
representation spanned by a spherical harmonic with positive m or by a
combination of spherical harmonics with positive sign.

The subscript 1 indicates the most symmetrical of the A or B representa-
tions with respect to binary axes perpendicular to z.

The A; representation is the trivial (totally symmetrical representation)
in all groups.

Indicate representations spanned, whenever the distinction is possible,
by spherical harmonics in ascending order of m.

They indicate double-group or spinor representations.

The subscript n/2 indicates that the corresponding representation is
spanned by spinor bases for j = n/2.

For proper groups, the E; /5 representation is a faithful (see 2.49) spinor
representation of the group.

They mean symmetrical and antisymmetrical representations, respect-
ively, with respect to the inversion.

They mean symmetrical and antisymmetrical representations, respect-
ively, with respect to o, (symmetry plane perpendicular to z).




§14-3 IRREDUCIBLE REPRESENTATION NOTATION

These prime and double-prime embellishments are not used if
the inversion ¢ belongs to the group, in which case the g and u
subscripts take priority and are the only ones used.

3 Lower-case symbols

a1g, toy Symbols in lower case denote functions that belong to the basis of the
corresponding irreducible representation.
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Stereographic projections and

three-dimensional drawings of point groups

1 Key to the symbols for the stereographic projections

Alternative settings

In the stereographic projection the object is assumed placed at the centre
of a unit sphere where the right-handed unit axes x, y, and z meet. The
axes and planes of symmetry are extended to cut the sphere, the axes
at points (poles and antipoles) and the planes at great circles. The
points and great circles of the sphere are projected onto the x,y plane
shown on the left (projection circle). The projection of a point is the
intersection with the projection circle of the line which joins —z to the
point. The poles project as points. The great circles corresponding to
planes perpendicular to the x,y plane project as straight lines and the
great circles corresponding to other planes project as arcs, except that
if the symmetry plane is on the x,y plane then its projection is the
projection circle itself.

When alternative settings are used for the same group two stereographic
projections, labelled A and B respectively, are shown. These labels are
carried over in the corresponding tables.

A full polygon of n sides denotes a rotation axis C),. A full circle denotes
an infinitely continuous rotation axis.

This symbol entails all the rotation axes in the group of C,,, which
are not explicitly labelled in the figures unless necessary for precisely
positioning the poles. Thus, the symbol on the left corresponding to Cg
entails C3 and Cs, not explicitly labelled.

The principal axis is always along the z axis and it is not usually la-
belled in the stereographic projection. The poles of C;I and C,, for the
principal axis are along +z and —z respectively.

A full digon denotes a rotation axis Cy (binary axis). A large digon as
shown here is used for binary axes along the z axis.

A C5 axis on the x,y plane. The full digon is the pole (that is, the point
used in the tables in order to determine uniquely the vector n that gives
the axis of rotation) and the hatched digon is the antipole.

An open n-sided polygon (or an open digon) denotes a rotoreflection axis
Spn. Although this figure should always be a regular polygon, a stellated
polygon is used when n is larger than ten in order to help readability.
Notice that in this case some of the symmetry elements of the point
group do not appear in this figure, although, of course, they are fully
identified in the stereographic projection. Large open digons are used
for Sy axes along z.

Centre of inversion 1.




§ 15-2

STEREOGRAPHIC PROJECTIONS

Reflection plane perpendicular to the x,y plane. Its pole is normal to
the line shown to denote the plane and it is such that the set ‘pole, o,
z’ is always right-handed.

A reflection plane coinciding with the x,y plane. Except in the icosa-
hedral group I, it is always labelled o, unless two other planes exist,
perpendicular to x (o) and to y (o), in which case it is called .. In
I, this plane is labelled o..

A reflection plane not perpendicular to the x,y plane. Such planes
appear only in the cubic and icosahedral groups. When grey, such

(10)

(11)

planes are not symmetry planes. (12)
2 Key to the symbols for the three-dimensional drawings
General All the above symbols are used, except that planes are represented as
such, in full lines. (13)
These circles represent atoms or totally symmetric groups of atoms of
different kinds. Not to be confused with the centre of inversion, a small
circle always at the centre of coordinates. (14)
A short segment connected to a circle is used in order to facilitate the
reading of the displacement from an edge of the particle indicated by
the circle. (15)

Bibliographical note

The stereographic projection is discussed in all books on crystallography. See, for example, Kelly and

Groves (1973). Notice that the drawings of stereographic projections provided in this book differ from

those given in the International tables for crystallography (1989), where rotoinversion axes, rather than

rotoreflection axes, are used.
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How to use the tables

General instructions

Use of this chapter

Do you have
to know projective
representations?

This chapter has been made as self-contained as possible and it should allow
most people in most cases to use the tables without detailed study of the previous
sections in Part 1 of this book.

No. Most readers will be unfamiliar with projective representations and will
prefer to use double-group techniques. They can do so without any knowledge
whatever of projective representations as long as they use the tables that involve
the latter purely as auxiliary constructions (for which simple instructions are
given in this chapter) in order to obtain the double-group tables that they require,
which would otherwise have been too bulky to print.

Description of the tables

Headers

Subsections labelled
(1), (2), ... after the
header

Subsection (2).
Group chains.
Subduction

The body of the
tables

Instructions to use
the tables

Footers

The page number on them gives a reference to the key for the header notation.

The page number on the header gives a reference to the key for the notation
used in these subsections.

The group chains listed are given for one supergroup and one subgroup of the
given group, both of the nearest order to that of the given group. Larger group
chains can be constructed either by referring to the tables of the supergroup and
subgroup or to the graphs in § 9-5. Possible problems arising on subduction along
the group chains are described in (9.6) to (9.8) and can be analyzed from the
chains constructed by either of the methods here mentioned. See also Subsection
(6) in the cubic and icosahedral groups.

The point-group tables are labelled in the form T n.i where n is the number of
the point group in the conventional order used in this book and the numeral @
identifies a table providing some specific information, such as parameters, multi-
plication rules, etc. for each group. When there are two settings for the group,
the labels A and B defined in (15.2) are used in order to distinguish the two
different versions required for T n.1, T n.6, T n.7, and T n.11.

They are given in the notes below, which are numbered with the same
digit ¢ as used in the tables. They provide a complete key for each table
T n.i and, where necessary for greater clarity, examples of the use of the table
are given. The heading of each table T n.:; contains a reference to § 16— which
is section 7 of the present chapter, as well as to the page on which that section
starts.

The page number on the header gives a reference to the use of the footers.
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HOW TO USE THE TABLES

0 Subgroup elements

Purpose of the table

Instructions

References

Absence of this table

This table appears only for point groups n that are heads of group chains so that
their tables of parameters (T n.1), multiplication table (T n.2), factor system
(T n.3), and matrix representations (T n.7) are used as master tables for all the
subgroups within the chain. This table gives the correlation between the symbols
of the operations of the master group and those of the subgroups. (Although
the nomenclature has been chosen so as to minimize the number of changes of
the symbol of the same operation in different groups, it is not possible to avoid
all such changes.)

Read the operation h in the column corresponding to a subgroup H (group
number m); the operation g of the master group in the extreme left of the same
row is the one that must be used in order to generate the entry for A in T m.1,
Tm.2, T m.3and T m.7.

The subgroup tables T m.i (i = 1,2, 3,7) contain references to the master tables
T n.i as well as to the subgroup elements table T n.0.

(i) Tt is not present in groups which are not heads of group chains.
(ii) It is not present in groups which are heads of group chains if there are no
changes in nomenclature of the symmetry operations all through the group chain.

1 Parameters

Notation for the headers of T n.1

‘Use T m.1’

‘Use T m.1 ¢’

Instructions

When this entry appears the parameters for the operations of the group m must
be read for the operations of the same name in T m.1.

When this entry appears:

(i) Identify the operations of the group n (listed at the top of T n, in subsections
3 and 4) in T m.0.

(ii) With this identification, obtain the parameters for n from T m.1.

See § 0.

Operations g

Improper operations

Operations g

Given an operation g listed on the first column of the table, the entries under

the columns labelled «, 3, v are the Euler parameters (see 3.7). The columns ¢

and n give the angle and pole of rotation (see 3.22, 3.23). The columns A and
¢ ¢

A give the quaternion parameters A = cos §, A = sin § n (see 3.28 to 3.30).

All improper operations are given as ig for g proper, and their parameters are
listed for g. The symbol ¢ can be considered as a marker (see 3.37), which is
not given in the tables, such that > = 1. When multiplying two operations
of the group the appearance of the marker on the result indicates that the latter
is an improper operation.

In order to obtain the parameters of the operation g proceed as follows, from
the entries corresponding to g. The Euler angles should not be used since they
cannot be defined uniquely for these operations. Add 27 to the angle ¢ and leave
n unchanged. Change the signs of A and A.
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MULTIPLICATION TABLE § 162

2 Multiplication table

Notation for the headers of T n.2

‘Use T m.2’

‘Use T m.2 ¢’

‘Use Tm.2w’

Instructions

When this entry appears the products for the operations of the group m in T m.2
must be read for the operations of the same name in the group n.

When this entry appears:

(i) Identify the operations of the group n (listed at the top of T n, in subsections
3 and 4) in T m.0.

(ii) With this identification, obtain the products for the group n from T m.2.
See § 0.

When this entry appears the group number n is of the form L = H ® C;, where
H is the group number m. All operations of L are given by [ = h and | = h71,
Vh € H. The necessary forms of the products of the operations of L are given
in the following table:

h h'i
h hh' hh'i
hi hh'i hh'

The names of the operations of the form h ¢ are obtained from the second column
of the parameter table for L, T n.1. The products hh’ are obtained from the
multiplication table for H, T m.2.

Multiplication rules
under the group G

Multiplication rules
under the group G

The result of the product g; g; appears in the intersection of the row g; with the
column g;.

(i) Product g; g;. Read the entry, say gi, in the intersection of the row g; with the
column g; and read from Table n.3 (see § 3 below) the factor in the intersection
of the row g; with the column g;. If this factor is 1 the desired product is g. If
this factor is —1 the desired product is gg.

(ii) Product g; g; or g; g;. Obtain first the product g; g; as explained in (i) and
add a tilde to the result. (Adding a tilde to gi gives gy.)

(iii) Product g; g;. Obtain first the product g; g; as explained in (i) and take it
without change.

Example. Obtention of the multiplication table for D>

Necessary data

T 22.2 Multiplication table T 22.3 Factor table

D2 E CQZ ng Ogy D2 E 022 CQac CQy
E E  Co. Oy Co E 1 1 1 1
022 CQZ E OQy CQm CQZ 1 -1 1 -1
021 CQm CQy E C2Z CQI 1 -1 -1 1
ng CQy Cye Co, E Czy 1 1 -1 -1
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The result

HOW TO USE THE TABLES

Table 16.1 Multiplication table for D,

]52 E CQZ C2:c C2y E 522 CZm CQy

K E QZZ CZw C2y K é2z QQI CQy

Construction of the table

Block in the box

Blocks on the right of
and below the box

Block on the bottom
right-hand corner

The products g; g; in the block in the box are obtained from the multiplication
rule (i) above. For example: from T 22.2, Cs, Cyy = C,;. From T 22.3 the
factor corresponding to the product Cs, Csy is —1. Therefore, Cy, Coy = C~'2x,
as shown in the table.

The products are obtained from the multiplication rule (ii) above, as a result of
which both blocks are equal and they are the ‘complement’ of the basic block
(boxed), in the sense that any operation ¢ in the basic block is replaced by g
and any operation g is replaced by g.

It is obtained from rule (iii) above, which makes it identical to the basic block
of the table.

3 Factor table

Notation for the headers of T n.3

‘Use T m.3’

‘Use T m.3 ¢’

‘Use Tm.3 w’

Instructions

When this entry appears the factors for the operations of the group m in T m.3
must be read for the operations of the same name in the group n.

When this entry appears:

(i) Identify the operations of the group n (listed at the top of T n, in subsections
3 and 4) in T m.0.

(ii) With this identification, obtain the factors for the group n from T m.1.
See § 0.

When this entry appears the group number n is of the form L = H ® C;, where
H is the group number m. All operations of L are given by [ = h and | = h1,
Vh € H. The necessary forms of the factors of the operations of L are given in
the following table:

n h'i
h [, R'] —[h, W]
hi —[h, W] [h, R']

The names of the operations of the form h i are obtained from the second column
of the parameter table for L, T n.1. The factors [k, h'] are obtained from the
factor table for H, T m.3.

Factor for the
product g; g;

It appears in the intersection of the row g; with the column g;.
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Use of the factor This factor is used to obtain multiplication rules in G (see § 2 above) but it is
also the projective factor [g;, g;] which appears in the projective representations
when the matrices corresponding to g; and g; are multiplied (see 10.29).

4 Character table

First column Tt lists all the ordinary (vector) representations as well as the spinor (or double-
group) representations which appear in the group. The spinor representations
are identified by half-integral subscripts. See §§ 14-1 and 142 for the notation.

Obtention of the character table for the double group

To form the head row This is given by the list of classes of G shown in Subsection 4 at the top of each
of the table point-group table T n.

To form the body of  You require the character table T n.4.

the table

Vector For classes that contain an operation g copy the character of the operation g in

representations that class given in T n.4. For classes that contain only operations g, copy the
character given in T n.4 for the corresponding operation g.

Spinor For classes that contain an operation g copy the character of the operation g in

representations that class given in T n.4. For classes that contain only operations g, copy the

negative of the character given in T n.4 for the corresponding operation g.

Example. Obtention of the character table for D,

Classes T 22, Subsection 4

E7 (022762z)7 (CQJJaéQx)v (C2y762y)a E

Data and results T 22.4 Character table Table 16.2 Character table for ]52

D, E Gy, Cyy Coy T D, E Gy Co Oy E T
CQZ OQm CQy

A 1 1 1 a A 1 1 1 1 1 a
B 1 1 -1 -1 a B 1 1 -1 -1 1 a
By 1 -1 -1 1 a By 1 -1 -1 1 1 a
Bs 1 -1 1 -1 a B3 1 -1 1 -1 1 a
E1/2 2 0 0 0 & E1/2 2 0 0 0 -2 C

Time reversal: column headed ‘7' in the tables

Notation G: the representation listed in column 1 of the tables, vector (integral angular

momentum, even number of electrons) or spinor representation (half-integral
angular momentum, odd number of electrons). G*: its complex conjugate.

Notation for ‘v’ Table 16.3 Time-reversal classification
G, G* Vector representation Spinor representation
a Real and equal No extra degeneracy = Doubled degeneracy
b Complex and inequivalent Doubled degeneracy = Doubled degeneracy
c Complex and equivalent ~ Doubled degeneracy  No extra degeneracy
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5 Cartesian tensors. The s, p, d, and f functions

The cartesian tensors (up to and including rank 3)

Head row

First column

Brackets

Rank 0

Rank 1 (vectors)

Rank 2

Rank 3

Cartesian harmonics

Warnings

Identifies the rank of the tensor.

Identifies the irreducible representation. For the purpose of this table the con-
jugate one-dimensional representations £ and 2E are joined together in a two-
dimensional (reducible) representation E & 2E. (This is necessary in order to
construct the required real bases.)

Cartesian tensors that span double or triple irreducible representations are joined
within brackets either curved or curly. The type of bracket used has no notational
significance.

There is only one, the number 1, which always belongs to the totally symmetrical
representation.

Under this heading the axial vectors that correspond to the irreducible represen-
tations are also given. The axial vector parallel to the x axis is listed as R, and
similarly for the others. These axial vectors have the same symmetry properties
as rotation operations about the corresponding axes and are often called rotation
vectors.

On making, in this case, use of the surface condition (13.39)

2?2 +y? 422 =1, (1)
the combination shown on (L1), which strictly speaking is a tensor of rank 0,
always belongs to the totally symmetric representation of the group and it is not
listed on the tables unless it is the only expression involving tensors of rank 2
that belongs to that representation.

Ten tensors of rank 3 are always listed in the tables.

The number of independent cartesian harmonics (see 13.40) is: rank zero: 1;
rank one: 3; rank two: 5; rank three: 7.

(i) The 1-, 2-, or 3-dimensional bases formed by the cartesian tensors listed can
be understood and used in two different senses. The elements of the bases can be
taken to be the independent variables, in which case the bases must be written
as column vectors and are pre-multiplied by the representative matrices. Or
the bases can be taken to be functions, in which case z, y, and z should be
understood as the functions x, y, and z (see 2.32) and the bases must be written
as row vectors, which are post-multiplied by the representative matrices.

(ii) The cartesian functions listed in the tables T n.5 span representations which
are not necessarily identical with those listed in the representation tables T n.7,
the latter always being constructed on bases derived from spherical harmonics.

The s, p, d, and f functions

Their identification

The cartesian tensors that allow the identification of the s, p, d, and f orbitals
are recognized in T n.5 by a left superscript, such as in the symbol "z. Such
entries lead to the correct subscript of the orbital function symbol, which must
be read from Table 4 below. The full form of the orbital in terms of the spherical
harmonics may be obtained from the table in § 13-5.
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Subscripts of the s, p, Table 16.4 Correspondence between the cartesian tensors listed in

d, f functions the tables and the s, p, d, and f functions
Cartesian tensor listed in the tables Function Subscript of the
with a left superscript B function
1 ] S
x D T
Y p Y
z D z
zZx d zT
Yz d Yz
Ty d Ty
222 — 22 —y? or 22 d 22
22—y or a?,y? d 22 — 42
2?2 or x(422 — 22 —y?) f r2?
yz* or y(4z* —a® —y?) f yz?
(2% —y?) or az,9%z f z(2? — y?)
TYz f TYz
x(x? —3y?) or 3 zy? f z(2? —y?)
y(32* —y?) or a?y,y’ f y(z* — y?)
25 or 2(22% — 322 — 3y?) f 23
Warning The functions obtained from this table span representations not necessarily ident-

ical with those listed in the representation tables T n.7, always constructed on
bases derived from spherical harmonics.

Example. Cartesian tensors and s, p, d, and f functions for Dg

T 28.5 Cartesian tensors and s, p, d, and f functions

Dy 0 1 2 3
A, 01 22 4 y2, 0,2
Ay oz R, (22 +92)z,72°
B
By
Ey O(z,y), (Re, Ry)  “(zz,yz)  {z(2? + %), y(e” + )}, " (22, y2?)
Ey °(zy,2* — y?) Hayz, 2(a® - y?)}
Es Ba(x? - 3y?), y(322 — y?)}
Cartesian tensors. For A;: either 22 + y2 or 22, or a linear combination of these two bases.
Rank 2
Cartesian tensors. For Ei: either {z(2? + y?),y(z? + y?)} or (x22,y2?) or a linear combination of
Rank 3 these two bases.
d functions For Ay: from Table 4, d_-.
For Ey: from Table 4, (d.z,dy).
f functions For Ey: from Table 4, (fy.2, fy.2).

(
For Ey: from Table 4, (fryz, fo(z2—y2))-
For E3: from Table 4, (fy(22—y2); fy@@2—y2))-
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6 Symmetrized bases

General notes

Ket symbols used

<|j1m1>7 ceey |]nmn>|

<|j1m1>7 ce |.]nmn>
Use of the bases

Function space

Proper groups

(lim)|

Improper groups with

(|lim)|

J, m integral, normalized spherical harmonics, eqn (13.1).

J, m half-integral, normalized gerade spin harmonics, eqn (13.26).

J, m half-integral, normalized ungerade spin harmonics, eqn (13.27).

=det 2712 (ljm) + jm)), m>0.

=det |70)-

=det 2712 (ljm) — [jm)), m>0.

Row vector of n components (columns) |jimi), |joma), ..., |jnmn). (See 2.59.)

Always gerade. (See 13.20).

All the components of this basis are ungerade spin harmonics. (See 13.21).

The only operators that can be applied on these bases are function space oper-
ators. (See 2.38). The bases must always be post-multiplied by the representa-
tive matrices. (See 2.55).

For proper groups, whenever this basis is listed, the bases <| jm>|. and <| jm)l.
can be taken for j integral and half-integral, respectively. (See 13.35.)

inversion

Whenever this basis is listed, for j integral, it is g and u for j even and odd,
respectively. The bases <|jm>|' (see 13.35) can then be taken with opposite
parity. For j half-integral the bases <| jm>| are always g and the bases <| jm)l.
(which are always listed) are always u.

Improper groups without inversion

(lim)|

The classification g and u is no longer valid. The symmetry assignment of the
bases <| jm>|. is always given. The symmetry assignment of the bases <| jm)l'
cannot in this case be obtained from the tables, since it is not readily derived
from the symmetry of <| jm>|.. These bases, however, are not of much practical
interest, except for [ = 1, for which identifications are provided in T n.5. (See
13.33,13.35.)

The cyclic, dihedral, and related groups

Columns labelled v and 1

Description

No sign in p

*p

Im| < j

These are numbers which can repeatedly be added to or subtracted from the
values of j and m, respectively, in the kets on their left, in accordance to the
following rules.

When no sign is given, ¢ and g can only be added to (but not subtracted from)
the values of j and |m| in the kets on their left.

When £ appears, v can be added to or subtracted from the values of m in the
kets on its left. If there is more that one ket in the same basis it is permitted to
use p for one partner and —p for another.

This condition must be satisfied in every case.
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SYMMETRIZED BASES

Example. Some symmetrized bases for Dgj, from T 32.6

Extract from T 32.6

Bases for A,
(First 18,

in increasing
order of j)

Bases for B’
(First 12,

in increasing
order of j)

Bases for Ey /5
(First 18,

in increasing
order of j)

Note
<§1>|
22/

ol

)

N

§ 16-6

Table 16.5 Symmetrized bases for some representations of Dj,

Dy, (lm)] Lok
Al 133) 66)_ 2 6
E' (I11),[11)] (122), —|22)| 2 46
Eyj (I33)13 ) (33).-133) 2 46
(13559 (153). - 153 2 *6
—1/2(|33>+|3§>) 1/2(|53 +153)) —1/2(|66 66))
12 (|73) +173)) ~1/2(186) — [86)) /2 (193) +193))
2(|99>+|9§)) ~1/2(]106) — |106)) 2(|113 +]113))
/2(|119) + |119)) /2 (|126) — |126)) /2 (|1212) — [1212))
~1/2(|133) +(133)) 2(|139>+|13§>) ~1/2(|]146) — |146))
“12(j1412) — [1412)) ~1/2(]153) + [153)) ~1/2(]159) + [159))
(I11), [1T)] (122), —[22)| (131),137)]
(142), —|42)| (I51),15T)| (155),155)]
(162), -162)| (164), —[64)| (I71),71)]
(|75),|75)] (77),177)] (182), —[82)]
BHEDI (B4~ 9 (133139
CRREDIN (155).-15 9 (53-8
BH.-EDI (153155 1531850
(1391391 (15 3)—15 3)] (15 5).-15 3"
(15 5)-15 5] (%215 3 (15513 5
IE.1% ) (158,153 (15 3. -1% 3

In the above bases, any first partner can be joined with any second partner as
in the example shown on the left. Although such mixed bases span the correct
representations, they are not useful in producing expansions in ascending order
in [jm) and the rules given are best used by ensuring that the j’s and m’s
in each basis keep their absolute values, as we have done in the examples
given.

The cubic and icosahedral groups

General description of the tables

Tables a, b, ¢

In the cubic and icosahedral groups T n.6 splits into three tables. T n.6a gives
the bases used in order to span the irreducible representations listed in the
tables. They are given in terms of the harmonics or spin harmonics of the lowest
order belonging to the given irreducible representation. They satisfy the general
conditions and conventions given in this section. This table is self-explanatory
and requires no further description or instructions.

T n.6b gives the symmetrized harmonics (j integral) for all j < 18 (cubic groups)
or j < 15 (icosahedral groups) for all (vector) representations. This table appears
in full only for the master groups Oy, (T 71.6b) and I, (T 75.6b).

T n.6c gives the symmetrized spin harmonics (j half-integral) for all the spinor
representations, in terms of the harmonics listed in T n.6b.

75



§ 166

The bases

Normalization
Orthogonality
Arbitrary phase

factor

Convention used

HOW TO USE THE TABLES

A basis of dimension n is a row vector of n columns.

Each column of the basis (symmetrized harmonic or spin harmonic) is normalized
to unity. Each basis is normalized to 2n + 1.

When the multiplicity is larger than unity (two or more symmetrized bases for
the same j, integral or half-integral) the successive bases are orthogonal.

Each symmetrized basis of dimension n may be multiplied by an arbitrary phase
factor.

The phase factors have been chosen so that, for the first column of the successive
bases belonging to the same j (multiplicity unity or larger):

(i) The coefficient of the first column is positive in all cases.

(ii) The coefficient of the first column of the first of the bases just mentioned is
also real.

(iii) For all three-dimensional bases of the cubic groups the coefficient of the
second column is always £1 or 0.

Instructions for the use of T n.6b

Identification of
representation

The kets
|jm>+7 |]m>—

The coefficients

Identification of a
column of the basis

Reading one column
of the basis

1,2E

EA

The symbol for the representation is given in the column headed by the group
name.

They are identified by the columns headed ‘j’ and ‘m’ and by the sign listed in
a column headed ‘£’ following one of the columns headed ‘Coefficient’. These
kets are defined at the beginning of this section.

They have been calculated to no less than fifteen significant figures and rounded
off to twelve. Coeflicients listed as 1 or 0 are correct to all orders.

A pair of consecutive columns headed ‘Coefficient’, ‘+’, respectively, identifies
one column of the basis. In n-dimensional representations these pairs are labelled
1,2,...,n and identify the columns of the basis in that order.

(i) Identify the group and representation desired. Call X the symbol of the
representation chosen.

(ii) Number the rows of the table as follows. Row 1: the row that contains X.
Row 2: the next row if and only if the representation symbol is blank. Row 3:
the next row if and only if the representation symbol is blank. And so on.

(iii) Each column of the basis is given by the coefficient in row 1 multiplied by
|jm)__, plus the coefficient in row 2 multiplied by |jm)_, and so on.

For the one-dimensional representations where this left superscript appears, pro-
ceed exactly as above but assign the ‘first column’ to 'E and the ‘second column’
to 2E.

For the representation where this superscript appears proceed in the normal way,
but changing the sign of the second column.

Examples of the use of T n.6b

Ohl Agg
(pp. 607, 608)

T: 2F
(pp. 609, 610)

First basis:

0.829156197589 |6 2)+ —0.559016994375 |6 6>+.

Second basis:

0.802015689788 |10 2>+ + 0.157288217401 |10 6>Jr —0.576221528581 |10 10>+.

First basis (obtained from column 2):

0.707106781187[20) , +0.7071067811871(22) , .

Sixth basis (obtained from column 2):

0.492125492126 [80) , — 0.4601016717931(82) — 0.278605397905 [84)
—0.5369417581201 8 6) , — 0.424489731629 [88) , .
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TdZ T1
(p. 613)

Iht Fg
(p. 673)

MATRIX REPRESENTATIONS § 16-7

Second basis:

Column 1: 0.935414346693 |41) — 0.353553390593 |4 3) .
Column 2: — |44) .

Column 3:  0.935414346693 |4 1>+ + 0.353553390593 |4 3)+.

First basis:

Column 1:  0.763762615826 |4 O>+ + 0.645497224368 |4 4)+.
Column 2:  0.333776501991 |41) — 0.942652240606 |4 3) .
Column 3: —0.763762615826 [42) — 0.645497224368 |44)
Column 4:  0.873838226858 |4 1>+ —0.486216776018 |4 3>+.

Instructions for the use of T n.6¢

Symbols
ai, ba, etc.

Symbols
t§3)’ tg?’), Q)

g, etc.

They indicate functions belonging to the Ay, Bs, etc., one-dimensional repres-
entations of the group n. They must be read from T n.6b.

They indicate functions corresponding to a given column of the multi-dimen-
sional representations 17, T2, Hy, etc. The column is identified by the super-
script. These functions must be read from T n.Gb.

Examples of the use of T n.6c

O: E5/2
(p. 581)

I: E7/2
(p. 653)

Basis {(as, asf|.

First basis: (|32 % %>a 132)_| %>|

Second basis:

((0.829156197589 |6 2) , — 0.559016994375[66), ) |5 5),

(0829156197589 [62) , — 0.559016994375 [66), ) |1 )]

1) 2 3 1 2 3
Basm(\f t( ﬁ—t( )a—i—t( )ﬁ)7%(—tg) ()5+t() )|
First basis:

(G (121 |£>+l22> 34) - [21),13 3.
L (-l21) 135 - 22) 13 ) - 121,15 )]

Basis (3 (/o - f% + fOa— f98), 5 (FVB+ fPa - fO5 - fDa)
First basis: B
(% {132) é %) (0.925614793411 |3 1>+ + 0.378466979034 |3 3)+) | %)

+ (—0.866025403784 |3 O)Jr +0.5(3 2>+) % %>

— (—0.135045378369 |3 1) — 0.990839414729(33) ) |1 1)},

1{132)_|1 1) + (0925614793411 |3 1), +0.37846697903433)_ ) |5 3)
— (—0.866025403784 |30), +0.5|32)_ ) |5 1y
— (—0.135045378369 |3 1>_ —0.990839414729 [33) ) |3 3)}|-

7 Matrix representations

Notation for the headers of T n.7, and for its first row

‘Representation’

Please note that, for brevity, unless statements to the contrary, the
word ‘representation’ is always used in this book to denote an irre-
ducible unitary representation.
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§16-7

‘Use T m.7 e’

‘Use Tm.7w’

‘Use Tnd &’

First row

HOW TO USE THE TABLES

When this entry appears, the matrices for the operations of the group m in
T m.7 must be read for the operations of the group n as listed in T m.7.

This entry appears in two cases. One is for the groups C,,, (n = 8,10), for which
the tables are identical (except for the notation of the operations) to those of
their isomorphs D,, and they are given with those of this latter group. (For
groups of lower order the table is given explicitly for convenience.) The second
case is for T4, for which the table is identical (except for the notation of the
operations) to that for O, with which it is given.

When this entry appears, the group number n is of the form L = H ® C,;, where
H is the group number m. All operations of L are given by [ = h and | = h1,
Vh € H. Each representation H of H splits into two representations H, ¢ and H,
of L, given by the following rules:

Representation l=heH l=hi,he H
of L
2 () = () (1) = H(h)
i, ) = A(h) B, () = —H(h)

In every case the matrix H (h) is read directly from T m.7, the symbols H being
identically those in the first column of that table.

This entry appears only for direct products involving cubic or icosahedral groups
or, in other cases, when the axis of highest symmetry of one of the factors is of
order larger than 6. (For groups of lower order the table is given explicitly for
convenience.)

When this entry appears, the representations are all one-dimensional and there-
fore identical to their characters, which may be read from T n.4.

Tt lists all the ordinary (vector) representations as well as the spinor (or double-
group) representations which appear in the group. The spinor representations
are identified by half-integral subscripts. See Chapter 14 for the notation.

Vector representations

One-dimensional

Multi-dimensional

As required for the
double group

The matrix of the operation g for the group number n is the character listed in
T n.4 for the class that contains g.

For multi-dimensional representations the matrix representative is listed for each
gin T n.7.

In the double group, the matrices thus obtained for g are valid without change
for g.

Double-group representations

Notation

Operations

One-dimensional
vector representations

Multi-dimensional
vector representations

You must recognize in the tables the vector representations (symbols in the first
row with no subscripts or integral subscripts) and the spinor representations
(symbols in the first row with half-integral subscripts).

The operations g and g for G must be obtained from subsection 4 of T n, where
the number n corresponds to the group G.

For one-dimensional vector representations of the group number n, the matrix
representative of the operations g and g are both equal to the character listed in
T n.4 for the class that contains g.

For multi-dimensional vector representations of the group number n, the matrix
representative of the operations g and g are both equal to the matrix listed in
T n.7 for the operation g.
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One-dimensional
spinor representations

Multi-dimensional
vector representations

Multiplication rules

MATRIX REPRESENTATIONS § 16-7

For one-dimensional vector representations of the group number n, the matrix
representative of the operations g and g are, respectively, the character listed in
T n.4 for the class that contains g and the negative of this character.

For multi-dimensional vector representations of the group number n, the matrix
representative of the operations g and g are, respectively, the matrix listed in
T n.7 for the operation g and the negative of this matrix.

The matrices obtained multiply by the multiplication rules obtained as in § 2
above.

Projective representations (full table, including vector representations)

One-dimensional
representations

Multi-dimensional
representations

Multiplication rules

For one-dimensional representations of the group number n, the matrix repres-
entative of the operation ¢ is equal to the character listed in T n.4 for the class
that contains g.

For multi-dimensional representations of the group number n, the matrix repres-
entative of the operation ¢ is the matrix listed in T n.7 for this operation.

The matrices obtained multiply by the multiplication rules obtained from the
multiplication table T n.2, without any change for the vector representations but,
for the spinor representations, the multiplication of the matrices corresponding
to g; and g; requires the insertion of the factor corresponding to the product
9i g5, as read from T n.3.

Examples. Representations of D3

Necessary data

T 23.4 Character table T 23.7 Matrix representations
D; E 2C3 3C} T Ds E Ey)s
Ay 1 1 1 a (1 0] (1 0 ]
Ay 11 1 a E 0 1 0 1
E 2 -1 0 a Mo . . .
€ 0 € 0
Ey /o 2 1 0 c Cgr 0 € 0 €
1 L i L ]
Bgp 1 -1 i b - T ra ]
_ e 0 e 0
2E3/2 1 -1 —1 b 03 | 0 6*_ I 0 € ]
[0 1] [0 1]
!
G2 | T 0 | 10 |
[0 & ] [0 e ]
/
Ca2 L& 0 | ie 0
[0 & ] [0 e
!
Cas e 0| ie* 0 |

e = exp(27i/3)
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§16-7 HOW TO USE THE TABLES

The double-group Table 16.6 The double-group representations for ]53

representations ]53 A Ay > By 1E3/2 2E3/2
e [0 B 0
cf 1 1 5 2 5 g*- 1 1
oy 1 1 5 2 8 2 -1 1
a1 -1 ? (1) ? g_ i i
S O IS
S I R
T D A
ci 1 1 8 2 8 2*_ 1 1
Cs 1 1 S 2 8 2 1 1
Cy, 1 -1 (1) é ? 3_ —i i
R O N
s oo [0 [by] o
€ = exp(2mi/3)

The projective Table 16.7 The vector and projective representations for ]53

representations D; Ay A, E E1/2 1E3/2 2E3/2
P R O
cf 1 1 S 2 8 2* 1 1
oy 1 1 5 2 S 2_ 1 1
T S B (O I
R O IS
o oo 0] [LE] -
€ = exp(27i/3)

Icosahedral group I

Description of the T 74.7 splits into two tables. T 74.7a gives all group elements in terms of gener-

tables ators and T 74.7b gives the matrices for the generators in all representations.
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T 74.7a. Generators

T 74.7b. Matrices for
the generators

DIRECT PRODUCT OF REPRESENTATIONS § 16-8

First column: lists the operations.

Second column: expression of the operations by the generators.

This table uses the same conventions and notations described in the general part
of this section.

8 Direct product of representations

Notation for the headers of T n.8, and for its first column

‘Use T m.8 o’

First column and
head row

Use of the table

When this entry appears, the products for the representations of the group m
in T m.8 must be read for those of the group n.

This entry appears in two cases. One is for the groups C,,, (n = 8,10), for which
the tables are identical to those of their isomorphs D,, and they are given with
those of this latter group. (For groups of lower order the table is given explicitly
for convenience.) The second case is for T4 for which the table is identical to
that for O, with which it is given.

They list all the ordinary (vector) representations as well as the spinor (or double-
group) representations which appear in the group. The spinor representations
are identified by half-integral subscripts. See Chapter 14 for the notation.

A® B

A®A

Note

Given two distinct representations A and B, their direct product A ® B appears
in the intersection of the A row of the table with the B column.

Is given by all the representations listed in the intersection of the A row with
the A column. Any brackets present (but not their contents) must be ignored.

This is the symmetrized product of the representation A with itself. (See 2.139.)
It is given by all the representations listed in the intersection of the A row with
the A column, discarding those shown in curly brackets.

This is the antisymmetrized product of the representation A with itself. (See
2.140.) Tt is given by all the representations listed in curly brackets in the
intersection of the A row with the A column.

For convenience of printing this table has often to be divided in blocks. In order

to find a product such as A ® B look for the block that contains B in its head
row. If A® B is listed B® A is equal to it but it is not listed.

Example. Direct products for representations of Dyg;,

Necessary data
(Last four rows of
the second block of
T 37.8)

Results

Table 16.8 Direct products for some representations of Dgy,

Dsn  Bau By By B3,

B2u Alg E3g E2g Elg

Eyy Ay ® {Asg} & Eng Eg @ E34 Big @ Bag @ Ly
Eau Arg & {Azg} @ Biy ® Bag Eyg & E34
Esy Alg @ {A2g} ® Eag
Bay ® Boy, = Ayy By, ® By = B34

By ® Eyy = Eay By, ® B3, = Eg

Eiu®Ery = A1y ® Agy @ Eoy E1y @ FEyy = A1y © By

E1y @ By = Agy Eiy® By = E14® E3y

E1y ® B3y = B1g ® Bag @ Eyy Eoy @ Bay = A1 ® Asg @ Big @ Bag
Eoy ® Egy = A1 ® By @ Bay Eoy @ Eay = Agg

Loy @ B3 = E14 @ E3y Esy @ By = A1 ® Asg @ Eoy

E3, ® E3, = A1y © Eay B3y @ B3, = Az

81



§16-9

HOW TO USE THE TABLES

9 Subduction (descent of symmetry)

Purpose of the table

Contents of the table

Alternative entries

Other subgroups

Subduction difficulty

Given a representation of the group G, G, it gives the representations of H C G
which appear in the reduction of ‘G.

The subgroups given in the table are only those which appear in the standard
setting used in the tables.

For some subgroups H two isomorphic realizations are listed for different choices
of the operations of G, which are given below the headings of H.

In most cases, all the subgroups H C G which can be obtained from the graphs
in § 9-5 are treated in T n.9 (where n is the serial number of G). When this is
not so the subgroups not so treated (H;, say) are listed at the bottom of T n.9
with a reference to a supergroup of the H; which does appear in the table. This
permits the completion of a chain headed by G and which contains the desired
subgroup H;.

If, in going from G to H C G, there is a change of bases on reduction (see 9.7)
then the group H is listed in brackets in the heading, as (H). Please notice that
in a few instances there is no change of bases but a change of notation (see 9.3)
arises. This has no important consequences and therefore it is not indicated in
the table. That such a change of notation exists or not must in the first instance
be ascertained from the graphs in § 9-5. (See also the table of subgroup elements,
labelled T n.0, that contains G.)

Example. Subgroups D2 of O

Necessary data
(from T 69.9)

Results and
comments

Table 16.9 Subduction from O to Do

(0] D, (D2)
0227 C2a:7 C2y CQZ} Céa’ éb

Ay A A

A A By

E 2A A By

T, B, ® By ® B3 B, ® By ® B3

T2 Bl@BQ@BS A@BQ@BS

E1/2 E1/2 E1/2

E5/2 E1/2 E1/2

F3/9 2E1 3 2E1 3

In the first setting, T reduces into B; @ Bs@® B3 of Dy. The matrix representation
T» may be obtained from T 69.7, where it can be seen that the four matrices E,
Cay, Coy, Co, are already reduced in Dg, the first, second, and third columns
giving respectively the representations By, By, Bs in T 22.4. Notice that when,
in the second setting, the matrices of E, Cy., C%,, and C}, are extracted from
T 69.7 their characters equal correctly the characters of A ® By @ B3 in T 22.4
but that a similarity is required to reduce this representation, as indicated by
the bracket in the heading.

10 Subduction from O(3)

Purpose of the table

Given representations of O(3), R7 (ordinary or vector representation) or RJ
(spinor representation, half-integral j) of dimension 2j+1 (see 12.22 and 12.23),
it gives the representations of a point group G which appear in the reduction of
R7 or RJ for each j.
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Subduction details

Description of the
table

Subduction to proper
groups

Subduction to groups
with i: table
headings marked &

Subduction to
improper groups
without the inversion

Example. Subduction

CLEBSCH—GORDAN COEFFICIENTS §16-11

They depend in general on the basis of O(3) chosen. For a given j this basis
has the form <| jm)l but for the representations R/ and R’ the embellished bases
<|jm>|. and <\jm>|., respectively, may also be chosen. (See 13.32 and 13.33.)

The first column gives the value of j and the representations of G appear in the
second column.

In this case, the basis <|jm>| of O(3) may be taken unembellished or embel-
lished, no further changes being required in the representations listed in the
table on reduction. (If corresponding bases are chosen, however, the appropriate
embellishments must be inserted.)

When this symbol appears, the subduction from O(3) can be done in either of
two ways:

(i) When the basis of O(3) chosen is unembellished, the subduction is exactly as
given in the table.

(ii) When the basis of O(3) chosen is embellished, the line corresponding to
the given j (or I) must be used with the subscripts ¢ and w of the representa-
tions interchanged. (If corresponding bases are chosen, however, the appropriate
embellishments must be inserted.)

Notice that the rule above is not valid in this case because the g, u classification
does not exist. The bases <| jm>|.7 in any case, have been explicitly identified in
T n.6. As regards the bases <|jm>|. see 13.33, 13.35, and §6.

from O(3) to Cyy,

Necessary data

Some results

T 60.10 & Subduction from O(3)

J Cop
2n (2n+1)A, ®2n B,
2n+1 2n+1)A, ®(2n+2)B,
n + % (’ﬂ + 1)(1E1/2,g @ 2E1/27g)
n=20,1,2,...
(lgm)|:  R°= A, (lim)|": R° = Ay,
R'= A, ®2B,, R'= A, ®2B,,
R? =34, ®2B,, R% =3A, ® 2B,
R? = 3A, © 4B,, R® =3A, ®4B,,
RY2=1E, 5, & Ey 2, (|jm>|°: RY2 =1y 5, ®%E1 /2.4,

R32 =21E 5, ®2°F) 3 4, R¥? =2y 5, ®2°E 2,0

11 Clebsch—Gordan coefficients

Notation for the headers of T n.11

‘Use T m.11 o’

‘Use T m.11 w’

When this entry appears, the Clebsch—Gordan coefficients for the group m in
T m.11 must be read for those of the group n.
This entry appears in two cases. One is for the groups C,, (n = 4,6,8,10), for
which the tables are identical to those of their isomorphs D,, and they are given
with those of this latter group. The second case is for T4 for which the table is
identical to that for O, with which it is given.

When this entry appears in the header of T n.11:

(i) Look up in T n.8 the direct product for which you want the Clebsch-Gordan
coefficients, disregarding the g,u subscripts in T n.8.

(ii) Use T m.11.

This procedure is used for groups which are direct products.
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HOW TO USE THE TABLES

When this mark appears, the representations are all one-dimensional and there-
fore all the Clebsch—Gordan matrices are equal to the number 1.

Notation required to use the tables

Reference

Irreducible
representations
multiplied

[im), |jn)

[IUP)

U{mn | IU P)

Use of the coefficients

Lower and upper case
convention

Note

The following is a summary of § 2.7.

Labelled i,j. The direct product of their bases is formed, the representation ¢
being the first factor.

Function of the m column of the i basis and function of the n column of the j
basis, respectively.

Function which appears in the reduced product of the bases corresponding to ¢
and j. [ is the label of the irreducible representation, U is the multiplicity index,
and P labels the column of that representation. U appears in the cubic and
icosahedral groups only. (IU) works as a single index, as if the representation I
were a new representation in each repetition. (Which would in fact be the case
for the functions of the corresponding bases which, although belonging to the
same representation and column, will in general be new functions for each value
of U.)

Element of the matrix of the Clebsch-Gordan coefficients (Clebsch—Gordan mat-
rix) corresponding to the row mn and the column (IU)P. (Notice that rows
and columns are labelled by double subscripts in dictionary order.) The left
superscript ¢j identifies the representations which are being multiplied.

[IUP) =32, lim) |jn) “(mn | IUP). (2)
Notice that the irreducible representations which are the factors in the direct

product are labelled in lower case and that the irreducible representations that
appear in the reduction of the direct product are labelled in upper case.

The user of the tables may multiply the whole of the Clebsch—-Gordan matrix
“{mn | IUP) by any desired phase factor, constant for all its matrix elements.

Description of the tables

Their structure

i and j

m and n

(IU)

P

U{mn | IU P)

Each table is divided in four fields which shall be numbered 1 to 4 starting from
top left and reading from left to right. Field 4 always forms a square matrix.

They are given by the two representations in field 1.

They are given in dictionary order of the numerical indices 1, 2, etc., in field 3.
They must be identified by the correct labelling of the columns of the bases
to which |im) and |jn) belong.

It is given in the first row of field 2. Notice that U does not appear explicitly.
Its existence is recognized by the repetition of I.

In field 2, the digits below each entry I give P. This digit labels the successive
columns of the basis corresponding to I, which must be identified from the
columns of that representation.

The Clebsch—Gordan matrix is given in field 4. The left superscript (obtained
from field 1) merely identifies the whole matrix. The matrix element displayed
on the left here appears in the intersection of the mn row in field 3 with the
(IU)P column from field 2.

Example. Coupling of the representations £/, and E5/, of Dg

Objective

To form the direct product of the bases €13 ® €52 and to reduce it.
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Information needed

Identification of mn

Identification of
|(1U)P)

The table

Calculation of
|(IU)P)

|Bla 1>

|BQa 1>
|E2’ 1)
|E2a2>

CLEBSCH—GORDAN COEFFICIENTS §16-11

T26.6 eip={(|53)l55]=(i1)li2)],
T26.6 esn={33).133]=(i1.1i2)
erp®esn=(133)133)133) 1530153133013 513 D) (3)

3 1L 333, 12 133)133) 21 33)153), 22 [33)153)
T 26.8 e1/2 @ e5/2 = B1 © By @ Ey. (Notice: no multiplicity. )
Because By and By are one-dimensional and Fs5 two-dimensional these symbols
are: ‘Bl, 1>, |BQ, 1), |l§27 1>, |E2,2>
T 26.6 |Bla 1> = |33>_7 |B27 1> = |33>+a

|E2,1) = [22), |E»,2) = —[22). (4)
The relevant table from T 26.11 is transcribed below. In this transcription the
components of the relevant bases are explicitly identified from the above and
they are added to the table in boxes.

Table 16.10 Clebsch—Gordan coefficients u=2"1/2
€1/2 €5/2 By Bs E

1 1 1 2

(20130 1531391 33)_ 133), [22) —[22)
11133) 11133) o 0 1 0
1 133) 21139 om0 0
2| 153 1133 i ou 0 0
2| 133) 2|153) 0 1

From (2) multiply the basis (3) by the first column of the matrix:

B =)o+ BB D -RDEDur D13 Do
=22 (501D -39 13D),

4 The above expression transforms like |3 3)

|Bo, 1) = 271/2 (|% 122+ |%g> \%g}), transforms like [33) .

|Es, 1) = \% %> |g§), transforms like [22).

|Eo,2) = \%g> |2 59, transforms like —|2 2).

Bibliographical note

A more detailed discussion of the three cases of time-reversal degeneracies given sketchily in the text may
be found in Heine (1960).
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17

Problems

Cross-references

All cross-references to material in Chapter 2 are given in bold without the chapter number.
All cross-references to material in the present chapter are given in light face without the chapter number.
All cross-references to material from other chapters are preceded by the chapter number in bold.

1 Multiplication rules

From T 51.2 (C3, group, A setting):
C; Oyl = Oy3. (1)

(C# is the counter-clockwise rotation seen from above Fig. 1.) Verify this result:
(i) geometrically; (ii) from the quaternion multiplication rule. Interpret this
result in the double group.

Part (i)

Construct Fig. 1 from F 51A. From Fig. 1:
g e S T3, Clea=Cooiati =ts=0uar = (3 ol =03, (2)
Note. The above work should properly be done for three linearly independent vectors such as ry, rf,

ry. In most cases, specially for the dihedral and related groups, the results are nevertheless fairly clear
when operating on a single position vector, as done here.

Part (ii)
T 51.14 C o [L,(008)], v i0,(010)],  ous—i0, (2, -3, 0] (3)
[£,(0032)] ¢ [0, (010)] = i [0, (030) + (00%2) x (010)] (4)
= i[0,(030) + (—4200)] (5)
=i[0,(-*10)] (6)
=i(-1)[0,(4,-3,0)] (7)

In the single-group work the (—1) factor is disregarded. In the double group, the parameter for 7,3 is
the negative of the parameter for 0,3, whence (6) must be read as C; 0y1 = 0y3. Notice that the factor
(=1) in (7) is the factor that corresponds to the product O oy in T 51.3.
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THE REGULAR REPRESENTATION § 17-2

2 The regular representation

Obtain the regular representation (see 50) for Cs, (A setting). (i) Verify the multiplication rule (1).
(ii) Determine the number of times each irreducible representation of Cj, appears in the regular repres-

entation.
Part (i)
T 51.2 C(ECT Cf 0p1 002003 ={C5 C E 30,1 042
1
1
_ 1
= (E C;_ 03 Oyl Ov2 01;3| 1 . (8)
1
1
T 51.2 Oyl (EO;_ 03_ Op1 Op2 O'U3| = (le Oy2 O'ngC;_ 03_|
1
1
_ 1
= (L?C'gr 03 Oyl Op2 O'U3| 1 (9)
1
1
T 51.2 O3 (E‘C'?:r C?? Oyl Op2 0’1]3| = (O'vga'vl 02 C; C:; El
1
1
= (E CSL CBT Oyl Ov2 Jv3| 1 1 (10)
1
1
Multiply the matrices in (8) and (9) and you will obtain the matrix in (10).
Part (ii)
8,9,10 X(gl &) =1Gl, g=E; x(g|G)=0, g#E. (11)
108 lil = 1G> x(g 1'G)* x(g | G) = |G| 'X(E | '&)* |G| = |'G|, Vi. (12)
g

Notice that this result is valid for any group: it is a fundamental property of the regular representation.

3 Transformation of the components of a vector

Transform the components z,y, z of a position vector under the operations C’;r and 0,1 of Cs,. Obtain
the corresponding matrix representatives and check that they multiply correctly by eqn (1).

T 51.14 Cy: ¢=2, n=(001).
12.5 C’;rr:—%r—&-@(nxr)—i—%(n-r)n:—%|x,y,z)—|—§|—y,x,0)+%|0,0,z)
1 VB
2 2 0
= @ -1 0 |z, y, 2). (13)
0 1
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§17-4 PROBLEMS

Proceed in the same way for o,; and 0,3 but remember to include the inversion 7, which changes
the signs of z,y, z.

4 A rotation acting on the function space

The cartesian components of a unit vector r are:
x =sinf cosp, y =sinf sinp, z = cosf. (14)

(They are written in sans serif because they are not the independent variables but rather functions of 0,
¢.) Find the matrix representative of a rotation R(az) and compare it with the matrix for CF in (13).

38  R(az)x(0p) = x(R(—az) 0, R(—az) @) = x(0,p — ) =sind cos(p — a) = x cosa+y sina. (15)

You will get in this way the matrix transformation:

cosae —sina 0
R(az)(x,y,z| = (x,y,2| | sina cosa 0], (16)
0 0 1

which will lead you to (13). Notice that it is essential to make the column-row distinction of the bases in
(13) and (16) in order to get the correct agreement.

5 The faithful (Jones) representation

Consider a cube with right-handed space-fixed axes x, y, z at its centre and

kiz parallel to its edges. The cube-fixed axes i, j, k coincide with x, y, z, respectively,
Ly N for the identity E. Find the transform of r = |z,y, z) under the rotation R by
% —27/3 about the rotation axis of components (111) with respect to x, y, 2.
Compare your results with the tables of Onodera and Okazaki (1966).
Fig. 17.2

It is easier to transform (i,j, k| than |z, y, z) (see 12.14). From Fig. 2:

i 0 e
(i,j,kl—)(—j,—k,il:(i,j,kl SR e (17)
0 -1 0
0 |
17 R |x,y,z) =|-1 0 0 Ix)ya Z) = |Z, ) _y) (18)
0 -1 0

This agrees with Onodera and Okazaki’s transform as listed in their Table II for the inverse operation,
that is the rotation by +27/3 (See the heading of their Table II.) Notice the essential change from row
to column vectors in dealing with the different bases in this problem.

6 Hybrids: general form

% e Obtain the type, in terms of orbitals, of the three hybrids that link the N atom
o, to each of the three H atoms in ammonia.
o, [\ [yb The hybrids hy, ha, hs are displayed in Fig. 3 (constructed from F 514).
d > x Their symmetry group is Cz,. From this figure their transformation properties
are obtained in Table 1, where for simplicity the hybrids are denoted by their
>y .
— subscripts.
Eip 173
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REDUCTION OF A REPRESENTATION 8 17-7

Table 17.1
Cs, E C; 037 Ovl Ov2 Ov3
ghy 1 2 3 1 3 2
gho 2 3 1 3 2 1
ghs 3 1 2 2 1 3
g(123| (123| (231| (312| (132| (321| (213|
A 1 0 O 0 0 1 01 0 1 0 O 0 0 1 01 0
G(g) 01 0 1 0 O 0 0 1 0 0 1 01 0 1 0
0 0 1 0 1 0 1 0 0 0 1 0 1 0 O 0 0 1
b% 3 0 0 1 1 1

The reduction of the representation, from (108) is carried out in Table 2, on using T 51.4.

Table 17.2
Cgv E 203 3UU IZl
Aq 1 1 1 1
Ay 1 1 -1 0
E 2 -1 0 1
X 3 0 1 Ao FE
T 51.54 s,ps € A1, pz,py € E = hybrids are p, p, p, = p>.

(If the orbital s were chosen the hybrids would be planar.)

Note. Table 2 can be constructed at once on using the following rule. The character of the repres-
entation spanned by o-type hybrids (hybrids which are symmetrical with respect to their own plane)
equals the number of hybrids left invariant by the symmetry operation in question. When using (108)
remember to add up over all the group elements not merely over the characters.

7 Reduction of a representation by the internal method

Find the matrix C that reduces the representation in Table 1.
From (120), add up the matrices of the 2C5 class. You will get the matrix M shown below. C is the
matrix of its (normalized) eigenvectors.

01 1 £ g
M=[10 1, C=|¥8 & _¥ (19)

110 V3 B 2

3 6 2

8 Cubic hybrids

Show that eight equivalent cubic hybrids of o type have the form sp3d?>f.
The symmetry group is Oy,. Construct Table 3 from T 71.4. Use a drawing and the rule in the note
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§ 17-9 PROBLEMS

to Table 2. The column headed ‘|i|’ follows from (108).

Table 17.3

Oh E 3C2 803 604 GCé 1 30 855 654 60d Ill
Ay 1 1 1 1 1 il 1 1 1 1 1
Az 1 1 1 -1 -1 1 1 1 -1 -1 0
Ey 2 2 -1 0 0 2 2 -1 0 0 0
Tag 3 -1 0 1 -1 3 -1 0 1 -1 0
Ty, 3 -1 0 -1 1 3 -1 0 -1 1 1
Ay 1 1 1 1 1 -1 -1 -1 -1 -1 0
Agy 1 1 1 -1 -1 -1 -1 -1 i 1 1
E, 2 2 -1 0 0 -2 -2 1 0 0 0
Ty 3 -1 0 1 -1 -3 1 0 -1 i 1
iliny; 3 -1 0 -1 1 -3 0 1 -1 0
X 8 0 2 0 () 0 0 0 1

The result is x = A1y & Tog @ Asy ® Thy.

From T 71.5 the hybrids are sdyy dy, dso foyz Po Dy D2-

Note. It is because of the requirement for f orbitals that coordination number 8 is realized in the
cubic structure only when the central atom in the bonding is a heavy atom, like U. One example is the
complex [(CyHs)4N]4[U(NCS)s], (Countryman and McDonald 1971). See also Problem 9.

9 Eight equivalent hybrids not requiring f orbitals

Show that the eight hybrids of the ion [Mo(CN)g]*~ have the form sp®d*. The
structure of this molecule is illustrated in Fig. 4, constructed from F 41. Notice
that four of the bonds are slightly shorter than the other four. Its symmetry
group is Dyg,.

Fig. 174

Construct Table 4 from T 41 .4.

Table 17 .4

ng E 02 QCé 25’4 20’d IZI
Ay 1 1 1 1 4
A, 1 -1 1 -1 0
B 1 1 -1 -1 0
B, 1 -1 -1 1 2
E 2 =2 0 0 0 2
X 8 0 0 0 4

x =24, ® 2B, @ 2E.
T415 8,dy3 € Ay; ps,dey € Ba; (ps,py), (dss,dy;) € E.

The characters are obtained from the rule at the end of § 6. The column headed ‘|i]’ follows from
(108).

Note. The molecule is very slightly distorted from the cubic structure (see Hoard and Nordsieck
1939) in order to avoid the use of f orbitals.
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HYBRIDS: THEIR FULL EXPRESSION §°17-10

10 Hybrids: their full expression

Obtain an expression for the p? hybrids for ammonia in terms of the spherical harmonics for [ = 1.
Form Table 5 in the same way as Table 1. Since you know that the hybrids will involve Ay @ E, enter
in the last two columns of the table their full representations from T 51.7A.

Table 17.5 € = exp(27i/3)
Cso E o s Ou1 Tu2 Ov3
gh1 1 2 3 1 3 2
ghs 2 3 1 3 2 1
ghs 3 1 2 2 1 3
Ay 1 1 1 1 il 1
N G G N R R LR R R R
.20 0 e et T 50 &0 €50
86 Ai: Wi hy=L12(hi+hy+hs) =as b0 = o= 2 (h1+ hy + ha). (20)
86 BEWE R =2 —fls— (h1+€hy + €*h3) =get ¢1 = 1= % (h1 + €hy + €*h3). (21)
91 E: WE ¢1 =5 {—(h1+ cha+ ¢*hy) — € (ha + cha + €*hy) — €* (hy + €¢hy + €*h3)} =der $2
=  ¢3=—%(h1+ € ha + chg). (22)

Eliminate hy, ho, hs from (20) to (22), remembering that € + €* = —1:

hi = ¢o + ¢1 — ¢2. (23)
hy = ¢o + €' ¢1 — €. (24)
hs = ¢o + €d1 — € ¢3. (25)

From T 51.6A, the basis function ¢y can be chosen as Y} and the bases ¢1,$, can be chosen as
¥i ‘und Yl_l, respectively. The spherical harmonics, if desired can be written in terms of the p,, ps, py
functions from the expressions in § 13-5.

11 Symmetrized molecular orbitals

Obtain the symmetrized molecular orbitals for the 7-electron system of benzene,
CeHs.

Form Fig. 5 from F 54. The numbers in the figure are the subscripts of the
7 orbitals ¢; (i = 1,2,...,6). All the positive rotations are counter-clockwise
from above the figure.

The symmetry group

This is a point which requires attention. It is Dgp which must be written as
Den=Csy @€, C,=FB@ op: (26)

When you operate on the 7 orbitals with o} you leave them invariant except for a change of sign.
Thus, if you symmetrize with respect to Cg, (see Problem 14) you know that the symmetrized functions
must belong to the irreducible representations of D¢ that are antisymmetrical with respect to o and
that subduce to the required representations of Cg,.
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§17-11 PROBLEMS

Note. A very common approach here is to write Dgp, = Dg ® C; and to symmetrize only with respect
to Dg. This is not good because the inversion changes not only the sign of the 7 orbitals but also their
labelling. (It transforms a 7 orbital into the negative of a different 7 orbital.)

How to find the irreducible representations that appear in the molecular orbitals

You must form a basis {¢1, @, . . ., d6|. The characters of the representation spanned by this basis equals
the number of orbitals left invariant by the corresponding operation. (This rule gives, in fact, the number
of +1 along the diagonal. Please note: this rule has to be changed if there are symmetry planes
normal to the m-electron system in the symmetry group used.) Form Table 6 from T 54.4.

Table 17.6

C6v E 2C6 203 C2 30’d 3Uv |Z|
Aq 1 1 1 1 1 1 1
Ay 1 1 1 1 -1 -1 0
By 1 -1 1 -1 -1 1 1
By 1 -1 1 -1 1 -1 0
Fq 2 1 -1 -2 0 0 1
FEy 2 -1 -1 2 0 0 1
X 6 0 0 0 2

X=4®B,®E ®E,. (27)

Use of the projection operator

If the only object of this work is to factorize the secular determinant, phases of the bases are unimportant
so that work is saved by not using the transfer operator. Also: although in principle the generators on
which the projection operator is applied must be the six functions ¢; (i = 1,2,...,6), it will be found that
¢1 suffices and for brevity only this will be listed below. Remember that in order to apply the projection
operator all operations of the group are necessary, not only those listed in the character table. The
transformed functions g¢; are obtained from Fig. 5. For simplicity, only the subscripts of the functions
¢; are entered in the table. The irreducible representations listed in (27) are obtained from T 54.4 and
T 54.7.

Table 17.7 e = exp(27i/3)
Cev E Cq Cy cf Cy Co ol Od2 0d3 Tv1 Tv2 ov3
9o 1 2 6 3 5 4 4 2 6 1 5 3
Aq 1 1 1 1 1 1 1 1 1 1 1 1
B, 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1
10 €0 €0 €0 e 0 10 0 e 0 €*
£y [0 1} {0 5*} {0 g} [0 e} {0 e*] [o 1 } [5*0} [e o]

[E—
—
o O
*
(=3
[E—
—
o o
o m
*
[E—
—
=IO
(= N e
[E—
—
o O
*
S
[E—
—
o ©
o m
%
[E—

o [l el Bl [l 0] T

The symmetrized functions (bases)

Call the bases as follows:

Y1 € A 12 € By; V3,94 € Ev; V5,6 € Ea. (28)
86 A Wi d1=52(d1 + b2 + b3 + bs + &5 + ). (29)
86 By: Wﬁl¢1:Tlg((bl_¢2_¢)6+¢3+¢5_¢4_¢4_¢2_¢6+¢1+¢5+¢3)- (30)
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SYMMETRIZED MOLECULAR ORBITALS §:17-12

86 Ey: W $1= 23 (61 — €" do — €6 + €d3 + € b5 — ¢a). (31)
86 Ey: Wit ¢1= 215 (—a — €b2 — € 6 + é1 + eds + €* 83). - (32)
86 By Wi ¢1=2 5% (61 + €* d2 + €66 + €63 + * ¢5 + 4a). (33)
86 By: Wi $1= 2 15 (—$a — eda — €" 66 — 61 — €65 — €*¢3). (34)
29 1= 1 (61 + b2 + 3+ ba + b5 + ¢6). (35)
30 V=% ($1 — b2 + ¢3 — da + b5 — P6). (36)
31 V3= 1 (¢1 — € b2+ €d3 — da + *P5 — ce). (37)
32 Y= § ($1 — €62 + " b3 — 4 + €d5 — €* ). (38)
33 ¥5= 5 ($1 + € b2 + eb3 + ba + €* 65 + €ds). (39)
34 o= —g (F1+ €ds + €* 3+ ds + €d5 + €* P6). (40)

Note. The functions ¥; to g are all precisely orthogonal because they belong to different columns of
different irreducible representations (see eqn 168). Thus the secular determinant is fully diagonal. These
functions must be normalized.

The full symmetry of the molecular orbitals in Dgj,

You must first find, from T 35.4, the irreducible representations of Dgp which are antisymmetrical with
respect to op: Big, Bag, P14, A1u, Aau, E24. You must then use the subduction table for Dgp, the wrong
way round, that is going from Cg, to Dgp in order to find the representations of Dgy in the above list
that subduce to those in (27).

T 35.9 Y1 € Asy; Y2 € Bay; V3, %4 € E1y; Vs, %6 € Eay. (41)

12 Symmetrized molecular orbitals: projecting over the representations

Obtain symmetrized molecular orbitals for the triangular molecule shown in
the figure, where a, b, and ¢ are normalized atomic functions symmetrical with
A respect to the respective symmetry planes shown. Form the diagonal matrix

elements of the Hamiltonian for a degenerate representation. Why are they

" equal? %
g

Fig. 17.6

Write the symmetry group as D3, = C3, ® C, and symmetrize with respect to Cs,. (See Problems
11 and 14.) Obtain the characters of Cs, from T 51.4. (Warning: in order to use 93 it is not sufficient
to list one operation of each class: all are needed.) List, as it is done in rows 1 to 3 of Table 8, the
transforms of the orbitals a, b, ¢c. Obtain in row 4 the characters of the representation spanned by the
basis (a, b, c| and find the irreducible representations that will appear on symmetrization.

Table 17.8

Casy E C;' O Gyl 0ys ) Oua Row number
ga a b c a ¢ b 1

gb b c a ¢ b a 2

ge c a b b a ¢ 3

X 3 0 0 1 1 1 A FE 4

Ay 1 1 1 1 1 1 5

A, 1 1 1 -1 -1 -1 6

E 2 -1 -1 0 0 0 7
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§17-13 PROBLEMS
From (93), on normalizing the molecular orbitals for 4, you get:
Y4 = = (a+b+o). (42)
For E, disregarding for the time being normalization and constant factors, you get:

Y1 =2a—b—c, g =2b—c—a, Y3 =2c—a—b, (43)

You know that you must get only two independent functions belonging to this representation. You
could therefore retain 1; and 15 and discard %3, but you can do better than this since you would like to
get two orthogonal functions. In order to do this, it is sufficient to construct out of the three functions
in (43) two that are symmetrical and antisymmetrical respectively to one symmetry plane, say oy;. It
is easy to guess that for this purpose it is enough to take 1¥; (symmetrical), and 93 — ¢35 = 3(b — ¢)
(antisymmetrical). On normalizing,

¢E:71-g(2a—b—c), ¢2E:ﬁ(b—c). (44)
Matrix elements:
HE =1(2a-b—c|H|2a—b—c) (45)
= é(4Haa e 2Hac e 2Hba + be + My =210+ Hep Hcc) (46)
.2 Haa — Hgp. (Haa > be, ete:, Hr = Hbc, etc.) (47)
HE = Hyo — Has. (48)

They are equal on account of (167).

13 A transition-metal complex

A transition-metal ion Me is surrounded by six s-type ligands, four of them,

% L
% 4 a, b, ¢, d, at the corners of a square of which Me is the centre, and two, e,
%[ T, ol f, at right angles to the square, above and below Me, respectively. The bond
FHSC, lengths Me—e and Me—f are equal but different from the other four. Form six
A Cot |15 symmetry-adapted molecular orbitals for the ligands and determine the orbitals
g
of Me which can combine with them.
f
KL

Figure 7, compared with F 33, shows that the symmetry group is Dyj;. The work can easily be done by
using the projection operator over the representations, eqn (93). Constant factors in it will be disregarded
since in any case the functions will have to be normalized. Notice that when this approach is taken more
than one generator must be used for the projection operator and that it is prudent to transform for this
purpose all the six orbitals given. This transformation is done from Fig. 7. The characters come from
T 33.4.
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USE OF THE PROJECTION OPERATOR ON A DIRECT PRODUCT §17-14

Table 17.9
D4h E 04 04_ OQ Cél CQQ Céll Cé/Q (3 54_ Sz— Op Oyl Ty2 gd1 gd2 |Z|
ga a b d c d b a c c d b a b d c a
gb b c a d c a d b d a c b a c b d
gc c d b a b d c a a b d c d b a c
gd d a c b a c b d b c a d c a d b
ge e e e e f f f f f f f f e e e e
9f 5 fr f e e e e e e e e f rr
Alg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
Az 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 0
By, 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 0
By, 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 1 1
E, 2 0 0o -2 0 0 2 0 0 -2 0 0 0 0
A1y 1 1 1 1 1 1 1 i -1 -1 -1 -1 -1 -1 -1 -1 0
Agy, 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
B, 1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 0
Ba, 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 0
E, 2 0 -2 0 0 0 0o -2 0 0 2 0 0 0 1
X 6 2 2 2 0 0 2 2 0 0 0 4 2 2 4 4
93, T 33.5 Aig: p1=a+b+c+d, ¢ =e+ f. s; dye. (49)
93, T 33.5 By ¢p3=a—b+c—d. day. (50)
93, T 33.5 Agy: Py =e— f. Dz fas. (51)
93, T 33.5 Ey: ¢5=a—c, ¢ =b—d. (p:mpy); (f:z:z27fyz2)

or (fw(wQ—yQ)afy(wQ—yQ))' (52)

14 Use of the projection operator on a direct product

Given G = H ® S, prove that in order to symmetrize with respect to G it is possible to symmetrize first
with respect to H and then to symmetrize with respect to S the function thus obtained. Discuss the
implication of their result in relation to the derivation of the symmetrized molecular orbitals in benzene
(Problem 11).

86 Wi, = GG Y ‘Gl (53)
126 Wikipg = "GHGITE D" FG(h8) g hs (54)
126 Whispg = HIPSULHI SIS G s p b (55)
126 = [HPSHHI SIS0 (R, 'S (55 hs (56)

= SIS Y (g {1 HI ™ S2 H(R);h s. (57)

The curly bracket here is the projection operator over H. For Dg;, = Cg, ® Cg, the projection over
C, transforms each generator, in principle, into a symmetrical and an antisymmetrical function with
respect to op,. In the case of benzene, the generators arising from the projection over Cg, are already
antisymmetrical (7 orbitals) and require no further symmetrization.

15 Selection rules

Consider the matrix element

160 I, = /(W)* Uk 7 dr, U* =z,y, or z, (58)
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where 1* and 1/ belong to irreducible representations of O. Find all the permitted transitions.
T 69.5 z,y,z€T). (59)

Use rule (161), but remember that when i = j the symmetrized direct product must be formed, that
is, representations in curly brackets in T 69.8 must be disregarded. The result is:

Al-—)Tl, A2_)T2, E—*Tl, E—)T2, T1—>T2. (60)

All the reverse transitions of those listed above are also permitted.

16 The form of the secular determinant

Find the structure of the secular determinant for the 7-electron system of naph-
¥ thalene, C10H1p, in the molecular orbital approximation.
From Fig. 8, the symmetry group is Dy;, = Cy, ® C, and from F 31, ¢, and
oy are perpendicular to x and y, respectively. From Problem 14, symmetrize
with respect to Cs,, on using T 50.4.

Fig. 17.8

Table 17.10

sz E Cz g O'y |’LI
Aq 1 1 1 1 5
Aq 1 1 -1 -1 2
B, 1 -1 -1 1 4
B, 1 -1 1 -1 &
X e 02

Since the representations that appear here are all one-dimensional, it follows from (167) that the
determinant will be block-diagonal with two 3 x 3 and two 2 X 2 blocks along the diagonal.

17 Normal coordinates

Construct normal coordinates for the water molecule: (i) in terms of internal

P 3 coordinates, (ii) in cartesian coordinates.
m(alZ [V 72 The symmetry of the water molecule is C»,, as displayed in Fig. 9 (compare
‘@‘" x with F 50).
T1|| o
%] @ Y
Fig. 17.9

Before you construct the coordinates you must determine the irreducible representations to which
they belong. Address for this purpose the representation spanned by #1,1, 21, €3, Y2, 22, £3, Y3, z3. Rule
for its character: Consider only such particles as are left invariant by the symmetry operation in question.
Call n the number of their coordinates that are left invariant and m the number of those coordinates that
change sign. The character is n — m. (See also Table 13 below.) We use T 50.4 for the characters, and
T 50.5 to find the irreducible representations to which the three translations (along z,y, z) and the three
rotations (R, Ry, R;) of the molecule belong. In Table 11, |n| is the number of normal coordinates in
each representation and it is obtained by subtracting from the column labelled |¢| the two columns that
follow |i].
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NORMAL COORDINATES 8§ 17-17

Table 17.11

C,, E Cy o0, oy il =z,y,2 Rg, Ry, R. |n|
A 1 1 1 1 3 1 2
Ay 1 1 -1 -1 1 1 0
By 1 -1 -1 1 3 1 1 1
By 1 -1 1 -1 2 1 1 0
X 9 -1 1 3

Part (i)

Use the internal coordinates 712, r13, @ in Fig. 9 as generators in (93), disregarding constant factors.

Table 17.12

Coy E Cy o, oy

griz 12 713 Ti3 Ti12

gris 13 Ti2 Ti2 T13

go o « o «

Ay 1 1 1 1

By 1 -1 -1
93 Aq: rio + 1713, Q. (61)
93 Bi: rig — 13- (62)

Notice that the number of normal coordinates in (61) and (62) agrees with |n| in Table 11.

Part (ii)

Table 17.13

CQU E 02 (o O'y |Z|

1 1y —IT1 —I1 il

Y Y1 —Un o N

21 21 21 21 21

T2 T2 —I3 —I3 T2

Y2 Y2 —Ys3 Ys —Y2

22 zZ2 Z3 23 22

T3 T3 —T2 —X2 T3

Y3 Ys —Y2 Y2 Y3

23 z3 22 22 Z3

Aq 1 1 1 1 3

Ay 1 1 -1 -1 1

B, 1 -1 -1 1 3

By 1 -1 1 -1 2

X 9 -1 1 3
93 All Z1, T2 — X3, 22 + 23. (63)
93 A2: Yo — Ys3. (64)
93 Bli T1, T2 4+ I3, 22 — Z3. (65)
93 Ba: y1, y2 + ys. (66)

As before, we have to remove from this coordinates three translations and three rotations. This can
be done by using the Eckart conditions. See for instance Lomont (1959), p. 121.
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§17-18 PROBLEMS

18 Infrared and Raman activity of normal vibrations

Prove that all the normal vibrations of water, which belong to the irreducible representations 24; ® B,
of Cy, (see Problem 17) are active both in infrared and in Raman transitions.

We require transition probability integrals
160 L = /(W’)* UF oy dr, (67)

with U* equal to the dipole operator x, 1, z for the infrared and to the polarizability tensor of components
2%, y2, 22, zy, yz, zx (or linear combinations thereof), for the Raman transitions. We form in Table 14
the terms required by the selection rule (161), noticing that all the representations are real.

Table 17.14
'G(g) ®7G(g) "G(g)
(T 50.8) (T 50.5)
Infrared Raman
A1®A1:A1 ZGAI any27Z2€Al
A1®31=B1 T € By Tz € By

B1 ® B; = A z € Ay $2,y2,22€A1

It can be seen at once from Table 14 that the infrared and Raman transitions are allowed under the
selection rule (161).

19 Overtones and combination frequencies

The normal vibrations of ammonia (NHj, symmetry Cs,) are 24; & E. Prove that all the normal
vibrations of ammonia are active both in the infrared and in the Raman spectra and that the same
property is valid also for all the overtones of A;. Prove that this property is also valid for any combination
frequency A1 — F.

Table 17.15
'G(g) ®G(g) "G(g)
(T 51.8) (T 51.5A4)
Infrared Raman
AT ® A = A z € Ay 22 e Ay
AIQE=F (x,y) € E (wy,2? —y?), (22,y2) € E
z €Ay 2 € A4

E®E=MOE (Ve E  (aya?—9?), (sa,y2) € B

The results for the normal vibrations are established from the rows corresponding to the products
A1 ® A and E® E. (See 162.) Because A; ® Ay = Ay, all the overtones (A;)™ are active in both cases,
like A; is. The activity of the combination frequency A; — E follows from the row for A; ® F.
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NORMAL VIBRATIONS IN METHANE § 17-20

20 Normal vibrations in methane

c; Methane (CHa) is of symmetry T4. Find its normal vibrations and their infrared

- €Sy and Raman activity. Find the overtones and combination frequencies active in
= 7 the infrared.
- Draw, from F 73, Fig. 10, where it is sufficient to identify an operation of
/ % each class only. Consider the basis spanned by the fifteen cartesian coordinates
P78 of the five particles and reduce it in Table 16, obtained from T 73.4 and T 73.5.
S || is the number of normal coordinates in each representation.
Fig. 17.10
Table 17.16
T, E 3C, 8G; 6Si: 60, Wh e.y.2 Re R, R, . |In}
Ay 1 1 1l 1 i 1 1
Asy 1 1 1 -1 -1 0 0
E 2 2 -1 0 0 1 1
Ti 3 -1 0 1 -1 1 1 0
T 3 -1 0 -1 1 3 it 2

ETAAG T S B et B

Notes. (i) In order to get x it is sufficient to consider a single operation in each class. (ii) Cy leaves
only the central atom invariant: it leaves one coordinate invariant and changes the sign of the other two.
Although Sy leaves the central atom invariant it changes the sign of the coordinate along the S; axis,
whereas the other two coordinates are not left invariant (subject to a possible change of sign) and thus
do not contribute to the character. (iii) o4 leaves invariant the z components of the central atom and of
two H atoms.

The normal coordinates will be called ¢; € Ay, ¢ € E, ¢35 € T, ¢4 € Ty. ¢5 is doubly degenerate
and ¢3 and ¢4 are both triply degenerate. See Problem 19 for the construction of Table 17.

Table 17.17
iG(9) ®G(g) - kG(9) Comments
(T 73.8) (T 73.5)
Infrared Raman
A ® A = A z?, 9%, 22 e A Raman active
AiQE=F Comb. not active
A1 QTy =Ty (z,y,2) € Ty Comb. active
2 22, 9% 2% e Ay ;
EQE=A16F (= 2 — Py e B Raman active
Behh=Ti6T (z,y,2) € Ty Comb. active
ToRTy,=A1®ED T (z,y,2) € Ty (zy,yz,zz) € Ty Raman, infrared, act.
TheTlh=A1oFEdTi 1T, ($,y,Z)ET2 ¢3 — ¢4 active#

# Notice that for this combination the ordinary direct product is required: the symmetrized direct
product is used not just when the bases have the same symmetry but only when they are identical. (See
162.)

If we require the matrix element of ¢3 with itself (overtone), we must form the direct product (4; &
E®Ty)® (A1 @ E®Ts), the term T5 ® T of which will contain Ty. Since z, vy, z € T, this overtone will
be active, and the same for ¢3.
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§17-21 PROBLEMS

21 Jahn-Teller effect

The methane molecule (CHy4) has Tq symmetry. Show that a molecular state for which the electronic
wave function ¢’ is degenerate (that is, it belongs to the representations E, Ty or Ty of Ty) is unstable.

From Problem 20, the normal vibrations ¢* are of symmetry A;, E, or T,. We have to deal with the
coupling of the electronic state " with a normal vibration ©*. This coupling will exist, and thus break
the molecular symmetry, if the matrix element (67), for i« = j, does not vanish for a vibration which is
not totally symmetrical (that is of symmetry E, or T5). It can be shown that the operator U* in this
integral has the same symmetry as ¢*. In order to use (161) we form the symmetrized direct products
for the three possible degenerate electronic wave functions:

T 73.8 E®RE=AGE. (68)
T 73.8 1T =TTy =A1 & ETs. (69)

In all three cases the right-hand side is such that the matrix element will not vanish when U* belongs
to either E or T5. Thus one of these two non-totally symmetrical vibrations is locked in, reducing the
molecular symmetry: this is the Jahn—Teller effect.

22 Electronic states in an octahedral complex

Consider an octahedral complex (symmetry Oy) in which we have two orbitals o, and e;. A molecular
electronic state in which there is one electron in the first and another electron in the second orbital is
represented with the symbol 5, e,. Neglecting exclusions arising from the presence of identical electrons
find the possible electronic states arising in the configurations t%w tag €g, eg.

Because we have assumed that the two states in 3 , and 63 are distinct, we do not require symmetrized
direct products. (See 162.)

T 71.8 Tog®@Tog =A1g @ Eg® Ty @ Ty (70)
Toy @ By =Ty ® Ty (71)
E,@E;=A14® Ay @ Ey. (72)

23 Splitting of a doublet in a magnetic field

Prove for an octahedral field that the transition e, — to4 is forbidden and that the doublets e, and e,
do not split when placed in a magnetic field.

The first result follows from (71) and T 71.5. For the second, consider the integral (67) with U* equal
to x, y, or z. From T 71.5, these variables belong to T1,. From T 71.8, E,® By = E, ® B, = A1 ® E,.
Because the result does not contain T3, the interaction fails.

24 Subduction (descent of symmetry)

The normal vibrations of methane, (CHy, symmetry Ty), are of symmetry Ay, E, or Ty (twice). Show
that in CH3D (symmetry Cs,) the T5 normal vibrations split into two vibrations, one singly degenerate
and the other doubly degenerate.

From T 73.9, Ty of T goes into A1 & E in Cg,,.

25 Double group: term splitting

Show that if a metal atom Me is at the centre of a complex with octahedral symmetry O its energy level
for j = 5/2, which is six-fold degenerate in the free atom, splits into two levels of degeneracy 2 and 4,
respectively.
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DOUBLE GROUP: TERM SPLITTING § 17-25

This result is immediate from T 69.10 which shows that j = 5/2 splits into E5,o @ F3/5. We shall
derive this result below from first principles, however, for two reasons. First, it will provide an example
of the construction of a character table for a double group in a case when there are irregular operations.
Secondly, it will provide an example, for the more adventurous reader, of how the work with the double
groups can be by-passed by using projective representations with substantial savings in labour and a
minimal use of theory.

Double-group method

All the work required in this method is given in Table 18, the first half of which (until the first rule in
the body of the table) consists of creating the character table of the double group.

Table 17.18
8 E E 30,,3C, 8Cs 8C; 6C, 6C,  6C5,6C, i
Aq 1 1 1 1 1 1 1 1 0
Ay 1 1 1 1 1 -1 -1 -1 0
E 2 2 2 -1 -1 0 0 0 0
Ty 3 3 -1 0 0 1 1 -1 0
Ty 3 3 -1 0 0 -1 -1 1 0
Ei)s 2 -2 0 1 -1 V2 -2 0 0
Es /s 2 -2 0 1 -1 —V2 V2 0 1
F3/9 4 —4 0 -1 1 0 0 0 1
) 0 27 T 27/3 8m/3 /2 5m/2 ™
3¢ 0 6r 3 27 81 3 /2 3m/2 3
®/2 0 /2 /3 4 /3 /4 5m/4 /2
sin 3¢ 0 0 0 0 0 -1 -1 0
sin(¢/2) 0 0 1 V3/2 —V3/2  V2/2 —V72/2 1
x*/? 6 —6 0 0 0 -2 V2 0
Notes about the construction of the table
Head row The classes are obtained from T 69, subsection 4.
Characters of vector (Representations without fractional indices.) The character of a class that con-
representations tains g or g is the same as the character of the class that contains g in T 69.4.

Characters of spinor The character of a class that contains g is the same as the character of the class
representations that contains g in T 69.4.
The character of a class that contains g is the negative of the character of the
class that contains g in T 69.4.
The character of a class that contains both g and g is always zero, so that the
two rules above are not incompatible.

Values of ¢ for g The rule is given in (12.43).

x*/? Use (12.38) to (12.40). From the column [i], it equals E5 o © F)s.
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§17-26 PROBLEMS

Projective-representation method

Table 17.19

O FE 302 803 604 GCé |Z|
Ay 1 1 1 1 1 0
Ag 1 1 1 -1 -1 0
E 2 -1 0 0 0
Ty 3 -1 0 1 -1 0
15 3 -1 -1 1 0
Ei)s 2 0 1 V2 0
Es)s 2 0 —V2 0 1
F3/5 4 0 -1 0 0 1
0] 0 =« 2n/3 w2 ™

3¢ 0 3rm 27 3r/2 3w

/2 0 w/2 «/3 /4 /2

sin 3¢ 0 0 0 -1 0
sin(¢/2) 0 1 V3/2 Vv2/2 1

x°/? 6 0 0 —V2 0

Notes about the construction of the table

Character table From T 69.4.
x°/? Use (12.38) and (12.39). It equals Es5/o @ Fjo.
The result is of course the same as in the double-group method, but with half the work. Notice that

T 69.4 can be used without any particular reference to the fact that the representations are projective
rather than vector.

26 A crystal field

Cerium ethylsulphate, Ce(CoH5S04)3 - 9H20, has the following structure. The Ce3* ion is at the centre
of a hexagonal prism with three (CoH5SO4)™ ions at three alternate vertices of the central hexagon, the
other three containing three HyO. The remaining six HoO are on the basal planes of the prism, three
above and three below the (CoH5SO4)~ ions. All the reflection symmetry of the hexagonal prism, except
that of the central plane, is broken by the ligands. The symmetry group is Cg,. The lowest configuration
of the Ce3" ion is given by a 4f electron in a 2F term (I = 3). This term splits first by LS coupling
and secondly by the effect of the crystal field. Find the form of the crystal field V (in terms of spherical
harmonics) required in order to calculate that interaction.

V=S Ay (73)

lm

The matrix elements of the potential which will appear in the perturbation calculation are of the form

I= / (Y'=3)* Vypl=3dr. (74)

Because of the orthogonality of the spherical harmonics, terms with [ > 6 will not contribute to I.
Also, (1)'=3)* ¢!=3 is gerade, so that V must also be gerade, whence it must contain even harmonics only.
Therefore:

l=even, [<6. (75)

We also know that V must have the symmetry of the totally symmetrical representation of Csp,. The
spherical harmonics belonging to this representation that satisfy (75) are:

T 61.6 Y007 }/207 Y40a YGOa %67 }/6_6' (76)
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TIME REVERSAL § 17-27

On taking the term for Y as a reference state for the energy, the potential function be written as

76|73 V=AY + AJYY + AV + ASYS + Agt vy S (77)

27 Time reversal

Consider an electron in a level with j = 3/2 in a field of D3 symmetry and in the absence of magnetic
fields. Prove that it splits into two doublets.

T 23.10 Jj=3/2— E1/5®'E3)5 ®2Es)s. (78)
T 23.4, Table 16.3 E1 /5 doublet, type ¢, no extra degeneracy. (79)
T 23.4, Table 16.3 1E3/2, 2E3/2 singlets, type b, become a degenerate doublet. (80)

28 Vector coupling

Consider the coupling of one electron in an e state with another electron in a ¢y state in an octahedral
field O.

T 69.8 e@ty =T & Ty (81)
T 69.11 Ty = % {e1 — exp(—27i/3) €2} to1. (82)
T 69.11 Tiz = 5 exp(27i/3)(e1 — €2) taz. (83)
T 69.11 T3 = % {exp(—27i/3) e1 — ea} tos. (84)
T 69.11 Ty = % {e1 + exp(—2mi/3) ea} ta1. (85)
T 69.11 Thy = % exp(2mi/3)(e1 + e2) taa. (86)
T 69.11 Tz = % {exp(—27i/3) e; + €2} ta3. (87)
T 69.6a e1 =75 (120) —1122)4), e2= 5 (120) +1|22)4). (88)
T 69.6a tor = [21)_, tgo = —|22)_, toz3=—|21),. (89)

All these functions can now be written in terms of the spherical harmonics by successive application
of the expressions in § 16-6 and § 13-1.
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The proper cyclic groups C,,

108
110
112
114
116
119
122
125
128
132

&
I T
[

= O 00 <1 O UTA O N
CTUTVTVTVTCTTOT

Notation for headers

Items in header read from left to right

Hermann—Mauguin symbol for the point group.
|G| order of the group.

|C| number of classes in the group.

|5| number of classes in the double group.
Number of the table.

Page reference for the notation of the header, of the first five subsections below
it, and of the footers.

Sl W

\I
[

This symbol indicates a crystallographic point group.
8 Schonflies notation for the point group.

Notation for the first five subsections below the header

(1) Product forms Direct and semidirect product forms. ® Direct product. @ Semidirect product.
(2) Group chains Groups underlined: invariant.
(See pp. 41, 67) Groups in brackets: when subducing one or more of the representations in the

tables to these subgroups in the setting used for them in the tables a change of
bases (similarity transformation) is required.

(3) Operations of G Lists all the operations of GG, enclosing in brackets all the operations of the same
class.
(4) Operations of G Lists all the operations of G , enclosing in brackets all the operations of the same
class.
(5) Classes and |7] number of regular classes in G (p. 51).
representations [i| number of irregular classes in G (p. 51).

|I| number of irreducible representations in G.
|Z] number of spinor representations, also called the number of double-group
representations.

Use of the footers

Finding your way Each page of the tables contains a footer giving the ordering of the group types
about the tables listed in the tables. The current group type is recognized because it carries no
page number under its name. On opening the tables at any page you should then
see at a glance whether to move backwards or forwards to find the group type
desired. More precisely, the page number for the group type desired gives the
page, like the present one, which carries the contents for the group type wanted.

Cn Cz Sn Dn Dnh, Dnd Cm) Cnh o I 107
137 143 193 245 365 481 531 579 641



1 IGl=1 |o]=1

IC] =2

T1

p- 107 O

(1) Product forms: none.
(2) Group chains: C3 D C;.
(3) Operations of G: E.
(4) Operations of G: E, E.

(5) Classes and representations: |r| =1, [i|=0,

F1

|[I: 1,

7] = 1.

See Chapter 15, p. 65

S N z

[ L.

J——

~
x\'m

Examples: CHFCIBr, NoHy.

T 1.1 Parameters § 16-1, p. 68
C, a [ v @ n A A
E 00 0 0 (000) [1,(000)]

T 1.4 Character table

T 1.2 Multiplication table T 1.3 Factor table §16-4, p. 71

§16-2, p. 69 § 16-3, p. 70 C, E T
C E C, E A 1 a
E E E 1 A1z 1 a

T 1.5 Cartesian tensors and s, p, d, and f functions

§ 16-5, p. 72

All functions f(z,y, z) span representation A.

108 C, C;

137

Sn
143

D,

193 245

Dnh

Dnd
365

Cno
481

Cnh (0] I
531 579 641



T 1.6 Symmetrized bases
§ 16-6, p. 74

Cy ljm) v I
A 00) 1 =1
Aiyp 5y 1 HL

T 1.7 Matrix representations
Use T1464. §16-7, p. 77

T1 C;

T 1.8 Direct products
of representations

§16-8, p. 81

C, A Ay
A A Ay
Ay A

1.10 Subduction from O(3)

T
§ 16-10, p. 82
J
n
n

Ci

T 1.9 Subduction (descent of symmetry) 2n+1)A
§16-9, p. 82 )

+ 5 2n+2)A
No subgroups. 2 (2n+2) Ay

n=0,1,2,...
T 1.11 Clebsch—Gordan coefficients
§16 11 @, p. 83
Cn Cz Sn Dn Dnh, Dnd Cm) Cnh o I 109

137

143

193

245

365

481

531

579 641



2 IGl=2 |C]=2

IC] = 4 T 2 p. 107 O C,

(1) Product forms: none.

(2) Group chains: Cy; D C3 D Cy,
D3 D (C3) D Cy,
Cs D C2 D Cy,
(3) Operations of G: E, Ch.
(4) Operations of G: B, O,
E, C,.

C3% DC3DC;, D7D(C3)DCi, D5D(C3)DCy,
D,>C;DC;, S40C3DC;, CypDCyDCy,
Cys4DCyDCy.

(5) Classes and representations: [r] =2, [i|=0, |I|=2, 7] = 2.

F2

y
‘—VX

\\\\%M/

-

See Chapter 15, p. 65

Examples: Non planar H,04, HCIC=C=CHCI.

T 2.1 Parameters
Use T 31.1¢. § 161, p. 68

T 2.4 Character table

—c,
-
A A
z
y
> X e
Lo
T 2.2 Multiplication table T 2.3 Factor table
Use T 31.2¢. § 16-2, p. 69 Use T 31.3¢. § 16-3, p. 70

§16-4, p. 71 T 2.5 Cartesian tensors and s, p, d, and f functions
s 5 G - § 16-5, p. 72
B 1 _1. a A o] 0, R, g2 2 0,2 Ogy Ogly o2, 0,3 Oy,
B9 1 1 b B O, Py, Re; Ry Dzz,Byz B3 zy? P22,
Brpp 1 i b B2y, 3, Oyz?
110 C, C; Su D, D D4 Caw Cai () I

137 143 193 245 365 481 531 579 641




T 2.6 Symmetrized bases

§16-6, p. 74

C, ljm) ¢ 1
A |00) 1 +2
B [11) 1 +2
1E1/2 I%E 1 +2
Eip 133 1 +2
T 2.8 Direct products

of representations

§16-8, p. 81

02 A B 1E1/2 2E1/2
A A B 1E1/2 2E1/2
B A 2E1/2 1E1/2
By /s B A
E1 )2 B

T 2.10 Subduction from O(3)

T 2 C,

T 2.7 Matrix representations
Use T244. §16-7, p. 77

T 2.9 Subduction (descent of symmetry)
§16-9, p. 82
No proper subgroups.

§16-10, p. 82
J C,
2n 2n+1)A®2nB
2n+1 2n+1)A® (2n+2)B T 211 Clebsch—Cord i

1 1)(1E 2 . ebsch—Gordan coefficients
n+3 (n+1)(*Erj2 @ °E1)2) §16 11 4. p. 83
n=20,1,2,...

Cn Cz Sn Dn Dnh, Dnd Cm) Cnh o I 111

137

143

193

245

365

481 531 579 641



3 IGl=3 |C|=3 |C]=6 T3 p. 107 O C;

(1) Product forms: none.
(2) Group chains: T D (C3) DC;, C3302C3DCy, C3,D2C3DC;, D3DC3DCy,
S8 0C3DC1, C2C30C;, Ce2C3D0C;.
(3) Operations of G: E, Cf, Cj .
(4) Operations of G: E, af, ¢y,
E, Cf, C5.
(5) Classes and representations: |r| =3, [i|=0, |[|=3, |I|=3.

F3 See Chapter 15, p. 65

%/

/= ==

Examples: H3C—CCls, partly rotated (not the ground state of this molecule).

T 3.1 Parameters T 3.2 Multiplication table T 3.3 Factor table
Use T 35.1. § 16-1, p. 68 Use T 35.2. § 16-2, p. 69 Use T 35.3. § 16-3, p. 70

T 3.4 Character table

§16-4, p. 71

Cs E o & T

A 1 1 1 a

g 1 €* € b

’E 1 € € b

1E1/2 1 —e* =& b

2E1/2 1 =€ —c* b

Az/a 1 -1 -1 a

€ = exp(2mi/3)

112 Cn Cz Sn Dn Dnh Dnd Cnu Cnh O I

137 143 193 245 365 481 531 579 641



T3 Cs

T 3.5 Cartesian tensors and s, p, d, and f functions § 16-5, p. 72

C; 0 1 2 3

A "1 %, R, o +y%,922  Pa(a® - 3y?), Ty(32” — y?), (2® +9%)2, 727

'E©°E O(z,9), (Ra, Ry) (zy, 2 —y?),  {z(@®+¢?),y(@® + y°)}, " (222, y2?),
Bz, y2) Yayz, z(2* —y?)}

T 3.6 Symmetrized bases

§16-6, p. 74
Cs |7 m) L %
A 00) 1 =3
g 1) 1 %3
2B i) 1 43
1E1/2 |% %) 1 ig
By lzz) 1 3 T 3.7 Matr oot
) atrix representations
Az /o 13 3) 1 +3 P

Use T 3.4 4. §16-7,p. 77

T 3.8 Direct products of representations

§16-8, p. 81

Cg A E 2B 1E1/2 2E1/2 A3/2

A A E ?E By %Ein Asp

'E E A 2By A B

’E 'E Az By PEip

1 2 1 .

2?/2 E % 22 T 3.9 Subduction (descent of symmetry)
1/2 §16-9, p. 82

Az o A

No proper subgroups.

T 3.10 Subduction from O(3)

§ 16-10, p. 82

J Cs

3n 2n+1)As®2n(‘E®%E)

3n+1 (2n+1)(As'Ea%E)

3n+2 2n+1)A® (2n+2)('E @ %E)

3n+ 3 (2n+ 1)("Ey /2 ® °E1/2) ® 2n Ag)s

3n+ 3 (2n+ 1)("E1/2 ® %E1/2) @ (2n+2) Ag)o
( )

T 3.11 Clebsch—Gordan coefficients

5
St §16-11 #, p. 83

n=20,1,2,...

2n +2)("Ey 2 @ °Ey 2 ® Ag))

Cn Cz Sn Dn Dnh, Dnd Cm) Cnh o I 113
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4 IGl=4 |Cl=4 |C]=38 T4 p. 107 O C,

(1) Product forms: none.

(2) Group chains: C4 DC4 D Cy, Cy4y DCy4DCy Dy DCyDCo, SgDCyDCo,
Cs D Cy D Co.

(3) Operations of G: E, Cf, Cs, C; .

(4) Operations of G: E, cf, Ca, Cyf,

E, €, Gy, 0.
(5) Classes and representations: |r| =4, |i|=0, |I|=4, |I] = 4.
F 4 See Chapter 15, p. 65
+
,u
y z
y
X > X -

Ay

C4-
Examples:
T 4.1 Parameters T 4.2 Multiplication table T 4.3 Factor table
Use T 33.1. § 16-1, p. 68 Use T 33.2. § 16-2, p. 69 Use T 33.3. § 16-3, p. 70
T 4.4 Character table
§ 16-4, p. 71
Cy E ¢ & ¢ 7
A 1 1 1 1 a
B 1 -1 1 -1 a
) 1 i -1 i b
g 1 i -1 —i b
By 1 €& -i b
2E1/2 1 € i * b
1E3/2 1 —€* -1 —e€ b
2E3/2 1 —e i —e* b
€ = exp(27i/8)
114 C, C; S. D,, D.n Dya Cis Cun (0] I
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T4 Cy
T 4.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
Cy 0 1 2 3
A o1 DZ,RZ $2+y2,D22 (x2+y2)z,523
B “a® —y?, Oy “z(2? —y?), Payz
'E®%E “(z,y), (Ray Ry)  Plawyyz)  {z(@® +y7),y(2® +y°)}, P (x2?, y2?),
Pla(z® - 3y?), y(32% — y?)}
T 4.6 Symmetrized bases §16-6, p. 74
Cs  im) [ C, ljm) f
A |00) 1 +4 B 13 3) 1 44
B 122) 1 44 By 13D 1 4
E 1) 1 +4 Espp  123) 1 +4
E 0 1T) 1 44 Espn 123y 1 44
T 4.7 Matrix representations
Use T4.4 4. §16-7,p. 77
. : T 4.9 Subduction
T 4.8 Direct products of representations (descent of symmetry)
§ 16-8, p. 81 §16-9, p. 82
1 2 1 2 1 2

Cy A B 'E °E E1/2 E1/2 E3/2 E3/2 Cy C,
A A B 1E 2E 1E1/2 2E1/2 1E3/2 2E3/2 A A
B A 2E 1E 1E3/2 2E3/2 1E1/2 2E1/2 B A
B B A %Espn 'Eyjy ’Eijn 'Esp B B
i) B 2By, ‘Bz By 'Eugs E30) B
EI/Q 1E A 2E B 1E1/2 2E1/2
Ey 6 B E 2B 1 Ey s
E3/2 'E A "B B\ /2
’Es /s ’E Es3 /2 B /o
T 4.10 Subduction from O(3) § 16-10, p. 82
J Cy
4n (2n+1)A@2n(Bo'E o %F)
dn+1 2n+1)(A®'Fa?FE)®2nB
4n +2 2n+1)(A®'E®?E)® (2n+2)B
4n +3 (2n+1)Ad (2n+2)(Be'E®%E)
4n + % (2n+ 1)(1E1/2 @ZEl/Q) @ 2n (1E3/2 @2E3/2)
4n+ 3 (2n+ 1)("Ey /2 ® °E1 /2 ® 'E3/o ® °Es )
4n + g (QTL + 1)(1E1/2 D 2E1/2) D (2n + 2)(1E3/2 D 2E3/2)
dn+ 2 (2n 4 2)('E1/2 © *E1j2 © "2 @ *Es)s)
n=20,1,2,...
T 4.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

Cn Cz Sn Dn Dnh, Dnd Cm) Cnh 0] 1 115
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5 IGl=5 |C]=5 |C]=10 T5 p. 107 C;

(1) Product forms: none.
(2) Group chains: Cs, DC5 DC;, C5,02C52C;, DsDC5D0C;, S10D0C5D6,,
C10DCs D Cy.
(3) Operations of G: F, 64 C'52+, 052‘, Cs .
(4) Operations of G: E, CF, CZ*, C2~, C3,
E, G, O, 0, C;.
(5) Classes and representations: |r| =5, [i|=0, [I|=5, |

S
[l
o

F5 See Chapter 15, p. 65

Y

Examples:

T 5.1 Parameters T 5.2 Multiplication table T 5.3 Factor table
Use T 39.1. § 16-1, p. 68 Use T 39.2. § 16-2, p. 69 Use T 39.3. § 16-3, p. 70
T 5.4 Character table § 16-4, p. 71

Cs B OoF ot oF oo T

A 1 1 1 1 a

15, 1 oF e € ) b

2F, 1 ) € €* &* b

g, 1 & & & e b

g, 1 € o* 6 € b

1E1/2 1 —€e* ) 6* =€ b

2E]/2 1 ~E o* ) —€* b

1E3/2 1 -6 € €* —o* b

2y 1 —6 & € —b b

A5/2 1 -1 1 1 —1 a

8 = exp(27i/5), € = exp(4mi/5H)

116 Cy C; Su D, Dyx Dya Cun Cun O I
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T5 Cs
T 5.5 Cartesian tensors and s, p, d, and f functions § 16-5, p. 72
Cs 0 1 2 3
A =h ] DZ,RZ $2—|—y2,D22 (xZ +y2)z,Dz3
lEl ®2E1 D(xay)7(R17Ry) D(Zxayz) {IL‘(:E2+y2),y(1‘2+y2)},D(SC227yZ2)
1E2 2 2-E2 D(xyv (EQ - y2) D{m(xQ - 3y2)a y(3x2 - y2)}7
O{zyz, 2(2? — y?)}
T 5.6 Symmetrized bases
§16-6, p. 74
Cs ljm) L 1%
A 00y 1 £5
1B, 1) 1 +5
2B, 1 1 +5
1B, 22) 1 +5
2R, 22) 1 +5
By /o |11y 1 +5
*E1 /s 13 3) 1 +5
B30 |2 3) 1 +5
By 133 1 +5 . .
A 15 3) 1 15 T 5.7 Matrix representations
5/2 22 Use T544. §16-7,p. 77
T 5.8 Direct products of representations § 16-8, p. 81
Cs A 'Ey By 'Ey ?Ey 'Eyp *Eip 'Espn Esp Asps
A A By By 'Ey ?Ey 'Eyp ?Ein 'Espn Esp Asps
Ey By A PEy ?Ey Ey;s 'Esp As;y 'Eipn Esp
’Eq By By 'Ey %Es;n 'Evp PEip Asp 'Esps
Ey B A 1E3/2 As /2 2E3/2 2E1/2 1E1/2
E, By Asjp Bz 'Eijs 'Espp B
Ey ) 2B A B, 2E, B
°E1 /2 P R DR O
Es ) 2B, A 2B,
*E3/a By B,
As /2 A

T 5.9 Subduction (descent of symmetry)
§16-9, p. 82
No proper subgroups.

Cn Cz Sn Dn Dnh, Dnd Cm) Cnh 0] 1
137 143 193 245 365 481 531 579 641
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Cs

T 5.10 Subduction from O(3) § 16-10, p. 82
J Cs

5n (2n+1) A 2n (‘B @ %E1 @ 'Es @ %Es)

5n + 1 (2n+1)(A® B, ©2E)) @ 2n (1B @ %Fy)

5n + 2 2n+1)(A®E) @ %E; @ By @ %E,)

5n + 3 (2n+1)(A®E; ®2%E1) ® (2n + 2) (1B, @ %F3)

5n + 4 2n+1)A® (2n+2)('Ey @ %E, @ 'Ey @ °F»)

5n+ 1 (2n+1)("E1j2 ® °E1)2) @ 2n (B2 & °E3j ® As)2)

5n+ 3 (2n +1)(*E1 )2 ® °E1/2 © ‘B30 & *E3)2) & 2n As o

5n+ 2 (2n + 1)(*E1 /2 ® %F1/2 ® 'E3/0 ® 2E3)2) ® (2n + 2) As 2
5n+ 1 (2n +1)("E1/2 ©°E1/2) @ (2n 4 2)('Esjp © *Esjp © As o)
5n+ 2 (2n+ 2)("E1 /2 ® %E1 /2 ® B30 ® %E3 /0 ® Ag o)
n=0,1,2,...

T 5.11 Clebsch—Gordan coefficients
§16-11 &, p. 83
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6 IGl=6 |C]=6 |C]=12 Te p. 107 O Cs

(1) Product forms: C3® Cs.
(2) Group chains: Cgp D Cs D C3, Csp DCs D Caz, Csy DCsDCs, Cs DCsDCy,
DgD>CsDCs DeDCsDCy 8S12D2C6DCs S12DC6DCo.
(3) Operations of G: E, e, of, G, G5, Oy,
(4) Operations of G: E, CF, Cf, Cs, C3, C7,
E &, CF Gy, €, CF.

(5) Classes and representations: |r| =6, [i|=0, [I|]=6, 7] = 6.
Fé See Chapter 15, p. 65
y '
/ /A
b
X » X >
-
%
Examples:
T 6.1 Parameters T 6.2 Multiplication table T 6.3 Factor table
Use T 35.1. § 16-1, p. 68 Use T 35.2. § 16-2, p. 69 Use T 35.3. § 16-3, p. 70
T 6.4 Character table § 16-4, p. 71
Ce E Cg- C;' Cz 03_ CS— T
A 1 1 1 1 1 1 a
B 1 -1 1 -1 1 -1 a
g, 1 —e e =1 e —e b
2Fy 1 —¢* e -1 € —¢ b
g, 1 € e* 1 € € b
2B, 1 €* € 1 €* € b
1E1/2 1 —1e —€ 1 —€ 1€ b
2E1/2 1 e —e -1 —€* —l€ b
By 1 —i -1 i -1 i b
Bges 1 i -1 -4 -1 - b
1E’5/2 1 —ief —e 1 —€* 1€ b
2E5/2 1 le —e —1 —e —i€ b

€ = exp(2mi/3)

C, Cy S, D, D,.s Dy4 Cru Cax (0] I 119
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Cs T6

T 6.5 Cartesian tensors and s, p, d, and f functions § 16-5, p. 72
Cs 0 1 2 3

A Dl DZ,RZ $2—|—y2,D22 ($2+y2)Z,D23

B Px(a® - 3y?), "y(32? — y°)

1-El @2E1 D(xay)v(vaRy) D(vayz) {x(x2—|—y2),y(x2—|—y2)},D(x22,yz2)
By @ 2B, O(zy, 2* — y?) O{zyz, 2(2? — y?)}

T 6.6 Symmetrized bases

§16-6, p. 74

Cs ljm) L K

A 00) 1 46

B 33) 1 46

o 11y 1 46

o NI 1 £6

15, 23) 1 +6

’E, |22) 1 +6

By /o i 1 +6

2E1/2 |% %} 1 +6

By |23) 1 +6

’Fs5/2 |2 3) 1 +6

Esn 153) 1 +6 . .

°p 155 1 16 T 6.7 Matrix representations
5/2 22 Use T 6.4 4. §16-7, p. 77

T 6.8 Direct products of representations §16-8, p. 81

Ce A B 'Ey By 'Ey; By By %Eip ‘Bz ?Es;n 'Espn %Esp

A A B 'Ey E\ 'Ey; *E; 'Eyjy ?Ey;s 'Espn 2Esy 'Esps Espo

B A By B, By ?E, 2E5/2 1Es/z 2E3/2 1E3/2 2E1/2 1E1/2

'Fy By A ?Ey B °Eyp 'Esp %Espy 'Eis Espn 'Esp

’Fy By B 'Ey ?Es;n 'Eipn *Evpp 'Espy %Es;s 'Espo

'E, By A 'Es;n By By %Es;s 'Esp 2B

E, 'Ey 'Es;y %Es;s 'Espp Eiy 'Eijs Esp

B g, A B, By B 2K,

2By /s B, 2, 2, B, B

Es/o B A °Fh By

Es /o B By By

Es)s g A

*Fs /2 °F)

120 Cn Cz Sn Dn Dnh, Dnd Cn'u Cnh o I
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T 6.9 Subduction
(descent of symmetry)

§ 169, p. 82

Ce Cs C2

A A A

B A B
o I B
°F ’E B
B, g A
°Fy ’E A
'E1/s 'Ero B
Evj2 By PErpo
'Bs3s Az By
B3, Az PEip
'Es s Eia 'Ei)s
’Es5 2 Eijy %Ey)s

T 6.10 Subduction from O(3) § 16-10, p. 82
J Ce

6 (2n+1)A®2n(B® 'E; @ %E) @ 'Ey & %E»)

6n + 1 2n+1)(A®'E, @ %E) @ 2n (B & 'Ey @ %F,)

6n + 2 (2n+1)(A®'Ey ®°E @ 'Ey ® %E») ® 2n B

6n +3 (2n+1)(AD'E; ©%E, @ By ®%FE2) @ (2n+2) B

6n + 4 2n+1)(A®'E1 @ %E) @ (2n + 2)(B @ By @ %E»)

6n +5 (2n+1)A® (2n+2)(B® By ©°%E; © 'y @ %Fs)

6nt+3  (2n+1)('Bi2 @ Eiyp) @ 2n (‘B @ *Bspr & sz @ *Es o)
6n+ 3 (2n + 1)(*E1 )2 ® %E1 )2 ® B30 ® 2E3)0) ® 2n ("Es 2 @ *Es2)

6n + 2 (2n+ 1)("E1 /2 ® %E1 /2 & 'Es )0 & %E5 )0 & 'Es 2 & %Es5)2)

6n+ 1 (2n+ 1)("Ey /2 ® °Erj2 @ 'Esjo @ °F3)0) @ (2n 4 2)("Es )2 ® *Es)2)
6n + 2 (2n +1)("Erj2 © °E1y2) @ (20 + 2)("Esjp ® *Es o @ 'Esj2 @ *Es2)
6n+ 5  (2n+2)("Eyj ®2E1 )2 @ By ® %Es)s @ 'Es o @ %Es o)
n=0,1,2,...

T 6.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

Cs

Cn Cz Sn Dn Dnh Dnd Cn'u
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7 IGl=7 |C]l=7 |C|=14 T p. 107 C,

(1) Product forms: none.
(2) Group chains: C7, DC7;D>C;, C7,y DC7zDC;, D7;DC7DC;, S14DCyDC.
(3) Operations of G: E, C¥, C2*, C3*, C3-, C%, C;.
(4) Operations of G: E, CF, C’?*’, o, e, C’72_, C7,
B CHLOF, CF. O, 0, &

(5) Classes and representations: |r| =7, [|i|=0, [|I|=7, |I|=T.
F7 See Chapter 15, p. 65
@, -
|
/
K/
Examples:
T 7.1 Parameters T 7.2 Multiplication table T 7.3 Factor table
Use T 36.1. § 16-1, p. 68 Use T 36.2. § 16-2, p. 69 Use T 36.3. § 16-3, p. 70
T 7.4 Character table § 164, p. 71
o F o ¢ ¢t ¢~ ¢ ¢ T
A 1 1 1 1 1 1 1 a
1B 1 6 S € b) b
B, 1 6 € n n* e 5 b
15, 1 & b) & € b
B, 1 € n* o* ) n e b
1B, 1 n* o €* € 6* n b
B, 1 9 5 € e ) n* b
By 1 - 6 —¢ — & - b
E1)2 1 —n 0 —e  —¢€ 6 -7 b
B35 1 —e n* =6 =6 n —€ b
2E’3/2 1 —€* n -6 =6 n* —e b
'Es /o 1 =6 & -0t - e =6 b
2E5/2 1 =6 e —-n -7 e =6 b
Arm i ~f 1 =1 =1 1 =t 8

6 = exp(27i/7), € = exp(4mi/T), n = exp(67i/7)

122 C, 8 S, D, D,» D,a G Cun 0] I
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T7 C,
T 7.5 Cartesian tensors and s, p, d, and f functions § 16-5, p. 72
C, 0 1 2 3
A =h ] DZ,RZ $2 +y2,D22 (x2 +y2)z,Dz3
By &%, O(z,y), (Res Ry)  (zz,y2)  {z(@® +47),y(a” + v*)}, P (222, y2?)
B, @ 2B, “(zy,2® — y?) ayz, 2(a® — y?)}
'Fs @ 2E3 {a(z® - 3y%),y(32% —y?)}
T 7.6 Symmetrized bases
§16-6, p. 74
C; lim) ¢ I
A 00) 1 %7
o 1y 1 47
B, Ny 1 47
15, 22) 1 47
°B, 23) 1 47
0N 33) 1 47
2B, 33) 1 47
B 133) 1 +7
i 133) 1 +7
B3 123) 1 +7
*Es3 /2 I%§> 1 +7
Esp  133) 1 +7
’Es o 125) 1 +7 ) )
77 T 7.7 Matrix representations
Use T 7.4 &. § 167, p. 77
T 7.8 Direct products of representations §16-8, p. 81
Cr A 'Ey By 'Ey ®Ey 'Es %Es5 'Eis ?Eijp 'Espn %Espy ‘B %Espn Agg
A A 'Ey ’Ey 'Ey, ’Ey 'Es *Es 'Eyp *Eiy 'Ej;n Esp 'Espy %Esps Az
'Fy By A 'Es *Ey ?Es By By Bz *Esps ‘B 2Espy Az 'Espo
’Eq By 'Ey ?Es 'Ey 'Es %Es;n 'Eis PEis 'Espy Azjs 'Esp %Esp
) Bs A 2By *Ey Bz *Esp Agpp PEipp 'Eiys 'Espy B
) 'Bs By 'Ey B %Ej;n 'Evp o Azpe %Es;s PErvp 'Esp
'F5 By A PEs;n Agp 'Espy 'Espn B PEspn 'Enps
E; By Azpp 'Espy %Espn Esps 'Esps 'Ein B
1) 2B, A B, 2E, 2B, 'E, lEs
’F1 /9 By By By B, B3 B
oA B, A 2, 2B, 2B,
By /o 2y By B B
1E5/2 1E2 A 1E1
2E5/2 2E2 2E‘l
A7z A
Cn Cz Sn Dn Dnh, Dnd Cn'u Cnh 0] 1 123
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Cy T7

T 7.9 Subduction (descent of symmetry)
§16-9, p. 82
No proper subgroups.

T 7.10 Subduction from O(3) § 16-10, p. 82
J C,

™ 2n+1)A®2n (1B, @ %E) @ By @ %Ey @ 'E3 @ 2F3)

™+ 1 (2n+1)(A®E; %)) @ 2n (1Ey @ %y @ B3 @ 2E3)

™+ 2 (2n+1)(A® 'E1 @ °E) @ By @ %Ey) @ 2n (\E3 & °E3)

™+ 3 (2n+1)(A®'E, @ %F, @ By @ 2By @ 'E3 @ %F3)

n + 4 2n+1)(ADE, @ %E; @ 1By @ 2Es) @ (2n + 2)(1E3 @ 2E3)

™ +5 (2n+1)(ADE; ©2%E1) ® (2n + 2)(1Ey @ %y @ B3 @ 2E3)

™ +6 (2n+1)A® (2n+2)(1Ey @ 2By @ By @ %E2 ® 'E3 @ %F3)

Tn+ i (2n+ 1) ("Erj2 © °E1y2) © 2n (‘Byjn © *Es o @ By © %Esjp © Ar o)
n+ 3 (2n+ 1)("Ey /2 ® °E1 /2 @ 'E3j2 ® °E3)2) @ 2n ("Esj ® *Es )2 ® Az)2)
T+ 32 (2n+ 1)("E1 /2 ® °E1 /2 @ 'Es )2 ® %E3 )0 & 'Es o @ %E5 ) @ 2n A7 o
T+ (2n+ 1)("Ey /2 @ °E1/2 @ 'E3/2 ® °E3)2 ® 'Es o ® %E52) ® (2n+ 2) Az )9
Tn+ 3 (2n+1)("Erje @ *Brjo @ "By @ °Eys) © (2n + 2)('Esj2 © *Esja ® Az/a)
Tn+ 4 (2n 4+ 1)("E1 /2 ® °E1)2) ® (20 4 2)('Es 2 © *Esjs © 'Esja © *Es ) © Az/2)
T+ (2n+2)("E1 /2 ® °E1 /2 @ 'Es/2 @ °E3)0 ® 'Es o ® *Es o ® A7)
n=012,...

T 7.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

124 Cn Cz Sn Dn Dnh Dnd Cn'u Cnh o I
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8 IGl=8 |C]=8 |C]=16 T8 p. 107 Cqg

(1) Product forms: none.
(2) Group chains: Cg, D Cg D C4, Cg DCgDC4, DgDCgDCy Si156DCsDCy.
(3) Operations of G: E, or, CI, C§+, Cs, Cg_, Gyy Oy
(4) Operations of G B, ¢, €}, c&t, 05, CF, C5, OF,
B GF Cf, €%, € 60, Cr. &5

(5) Classes and representations: |r| =8, [i|=0, [I|=38, 7] = 8.
F 8 See Chapter 15, p. 65
{\
>
f///—y\\ ~_ z L
/ y
X X >
/' \'\ _/\\
\/ S | |
Examples:
T 8.1 Parameters T 8.2 Multiplication table T 8.3 Factor table
Use T 37.1. § 16-1, p. 68 Use T 37.2. § 16-2, p. 69 Use T 37.3. § 16-3, p. 70
Cy C; Sy D, D, D;.a Ciiu Can O I 125
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Cs T8

T 8.4 Character table §16-4, p. 71

Cs E cf cf ¢t o, ¢y ¢ Oy T

A 1 1 1 1 1 1 1 1 a

B 1 -1 1 —1 1 -1 1 —1 a

By 1 € —i —e -1 —€* i € b

’E, 1 € i —e* -1 —e i €* b

1R, 1 —-i -1 1 1 —-i -1 i b

°F, 1 i -1 —i 1 i -1 —i b

1B, 1 —e i e —1 €* i —€ b

2Fy 1 —e i e -1 € —i —e* b

1E1/2 1 (5 € 16* i —1(5 6* 6* b

2E1/2 1 5* 6* —15 —1 15* € 5 b

1E39 1 -8 — =6 i -5 — is* b

2By, 1 @6 —e* -8  —i —& —e —i§ b

1E5/2 1 i —€ o* i ) —e*  —i6* b

2E5/2 1 —i6* —€* o —i 0 —e i0 b

Brpy 1 =6 e —i0* i 6 & =6 b

2E7/2 1 —5* E* 15 —1 —15* € —5 b

d = exp(27i/16), € = exp(27i/8)

T 8.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
Csg 0 1 2 3

A Dl DZ,RZ x2+y27mz2 (x2+y2)z,mz3

B

By @ 2E, O(z,y), (Re By)  P(zwoyz)  A{x(@® +42),y(2® + y*)}, (222, y27)
B, & °E, 5(ay, 2% - y) B {ayz, (2 — y?))

1B © s Ox(a® - 3y?),y(32® — y?)}

T 8.6 Symmetrized bases

§ 16-6, p. 74
Cs lim) v I
A 00y 1 +8
B |44) 1 +8
1B, |11) 1 +8
’F 11 1 +8 . .
1E1 :22i ) s T 8.7 Matrix representations
2E2 27 X . Use T84 &. §16-7,p. 77
2
15, 133) 1 +8
By 13 3) 1 +8 ) ,
- T 8.8 Direct products of representations
E i1 1 +8
1/2 22 §16-8, p. 81
11
8 1 1 2 2 3 3
Brp |3z 1 £8 Cs A B 'E, B, B, 26, 'E; E
E |2 3) 1 +8
3/2 22 A A B 'E, 2B, B, 2B, E; Z2E;
2E3/2 |% %) 1 +8 B A 1E3 2E3 2E2 1E2 1E1 2E1
) T 1B, B, A 2B; B, B, B
Bsp I33) 1 48 2, %, B, By B B
’Es5 /2 153) 1 +8 ) B A By 'Es
1 77 ’F B 2% 'E
E7)2 13 3) 1 +8 2 3 !
2 / 3; B By A
E7/2 |§ §> 1 +8 2E3 2E2
-
126 C, C; S, D, D, D,q Cn Cun O I
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T 8.8 Direct products of representations (cont.)

T8 Cs

T 8.9 Subduction
(descent of symmetry)

§16 9, p. 82
Cs "By *Evjp By Bz 'Esps Es;s 'Ern %Ergo Cs C, C,
A Evjy 2Evjs ‘Bz ?Espn 'Esps Es;s 'Ern %Erpo A A A
B Ezjo ®Erj2 'Esjp *Espy 'Espn 2Es;s 'Eijs %Erpo B A A
'Ey Evjo 'Esjs *Es;s 'Evjs ?Esys 'Erpn Ern 'Espo By 'E B
’Ey ’Es;y 'Evjs PEvjs 'Es;y *Erps 'Espy ?Es;s 'Eqp ’Ey ’E B
'Ey Esjy °Esjs 'Erjp *Erp 'Eijp *Erjs 'Es;y Espo 'y B A
) Es;o Esjs 'Evjp %Erjs 'Erps 2Eijs ‘Bz %Es)o ) B A
'Fs Ez/2 'Esjos *Esjp 'Ern *Es;s 'Eijs 2Eijs 'Espo ' 'E B
’Fs Esjo 'Erj2 *E7a 'Esjs ?Eijs 'Espn ?Espn 'Eijs ’Fs °’E B
'Ey )y ’E) A 'E, B, 'BEs  'Ey B3 B 'Eijs By 'Eip
°F1 /2 By  'Ey Ey  °Ey, Es B 'Es ’E1 /2 By /2 1/2
By ’Fs5 A ’Ey B By %E, '3/ Ess0 'Ei)s
°Es3/2 'Es B By By s Es o B3y *Ei)s
;E5/2 Fs 114 ;El ;Ez ;Es /2 jE:s/z 2E1 /2
Es /o Es Eo Ey Es /2 E3;2 “Ery
'E7 /o B, A 'E7 /o Erj2 'Eijs
*E7/2 By Er/2 'Eyjp ?Erjo
T 8.10 Subduction from O(3) § 16-10, p. 82
J Cs
8n (2n+1)A®2n (B 'EL @ %E, @ 'Ey © 2By @ 'E3 @ %F3)
8n+1 2n+1)(ADE| ®2E;) ®2n (B @ By @ %Ey @ B3 @ %E3)
8n + 2 (2n+1)(A®E; ©%E) @ By @ %E>) @ 2n (B @ 'E3 @ %F3)
8n +3 (2n+1)(AD'E, ©%E @ By ®°%FEy @ 'E3 ® %E3) ©2n B
8n +4 2n+1)(As'E18%E 6B, 8 %E, @ 'E3 & %E3) & (2n+ 2) B
87’L =+ 5 (271 + 1)(A @ 1E1 @ 2E1 @ 1E2 @ QEQ) @ (27’L =+ 2)(B @ 1E3 @ 2E3)
8n + 6 (2n+1)(A®'E; ©2%E)) ® (2n+2)(B @ By @ %Fy @ 'E3 @ %E3)
8n+7 (2n+1)A® (2n+2)(B® By ©%E1 © 1By @ °Fy @ B3 @ %E3)
8n + % (2n + 1)(1E1/2 &) 2E1/2) P 2n (1E3/2 &b 2E3/2 SY 1E5/2 2 2E5/2 @ 1E7/2 D 2E7/2)
8n+ 3 (2n+ 1)("Ey /2 ® °E1j2 @ 'Es)2 @ °Es)2) @ 2n ("Es o ® *Es )2 ® 'Er/o ® °Er)2)
8n + g (2n + 1)(1E1/2 S¥) 2E1/2 > 1E3/2 ©® 2E3/2 (&) 1E5/2 S>) 2E5/2) @ 2n (1E7/2 ©® 2E7/2)
8n+ % (2n+ 1)("Ey /2 ® °E1 /2 @ 'E3/2 ® °E3 )2 ® 'Es )2 ® *Es )2 ® 'Eq o @ *Er)2)
8n + 2 (2n +1)('Ey )3 ©°E1/2 © 'Esjp © *Esja ® 'Esjz © *Es ) @ (20 + 2)("Erjz © *Erj2)
sn+4  (2n+1)(*Eio @B @By @ %E3)0) @ (2n 4 2)("Es o @ *Es 2 @ 'Er s @ 2Er )
&n + 12*3 (2n + 1)(1E1/2 D 2E1/2) &) (2n + 2)(1E3/2 D 2E3/2 &) 1E5/2 &) 2E5/2 D 1E7/2 D 2E7/2)
8n + % (2n+2)("Ey ) @ 2E1/2 D 1E?,/2 D 2E3/2 ®'Esp @ 2Es/2 D 1E7/2 D 2E7/2)
n=20,1,2,...

T 8.11 Clebsch—Gordan coefficients

§16-11 @,

p- 83
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9 IGl=9 |C]=9 |C|=18 T9 p. 107 C,y

(1) Product forms: none.
(2) Group chains: Cg D C9 D C3, Cg, DC9DC3, DygDCyDC3z, S18DCyDCs.
(3) Operations of G: E, Cf, CZt, C¥, Cs*, C3~, C3, C3~, Cy .
(4) Operations of G: B, CF, Git, of, @it o, oy, 0, 05,
B, cf &, of, a3t 0, 6. CF, O
(5) Classes and representations: |r| =9, [i|=0, [I|=9, |I]=9.

F9 See Chapter 15, p. 65

ATE |
o
y \\?5// {j\l./’;‘j

/‘y

X X q
| B ]
Co
\/

Examples:
T 9.1 Parameters T 9.2 Multiplication table T 9.3 Factor table
Use T 38.1. § 16-1, p. 68 Use T 38.2. § 16-2, p. 69 Use T 38.3. § 16-3, p. 70
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T 9.4 Character table §16-4,p. 71
Cy E Cf o3t cf cyt oy Cy Ci Oy T
A 1 1 1 1 1 1 1 1 1 a
o R T A b
2B, 1 6 e 5 60 6 g & 6 b
B, 1 €* 0 7q 5 ot 0 € b
’E, 1 € 0 n* 5 5 n 0* €* b
'Es I oo 1 nooom b
°E3 1 w1 9 9 1 9 7 b
15, 1 ¢ 5 gt e e 6 8 b
’F, 1 46 5 q €* € n* 5 0* b
By /s 1 -0 5 -t € S 5 -0 b
2E1/2 1 -0 o —n € e —n* o —0* b
"By 1 - 9t -1 np 9t -1 -y b
By 1 - . -1 9t q -1 n - b
Wy 1 —¢ 0 —p 5 6 - 0 —e b
*Es o 1 —e 0 —n* o 5§ - 0*  —¢* b
'Er /o 1 =6 € -7 0 0* —n* e —o* b
26y 1 =6 & -t 0° 0 -y e =0 b
A9/2 1 -1 1 -1 1 1 -1 1 -1 a

d = exp(27i/9), € = exp(47i/9), n = exp(67i/9), 6 = exp(8ni/9)

T9

Cy

T 9.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
Cy 0 1 2 3
A Dl DzvRZ £L'2+y2,D22 (m2 +y2)z,D23
By @ 2B, °(z,9), (Re, Ry)  "(zw,yz)  {z(2® + %), y(a® + 7))}, O (222, y2°)
1E2 @2E2 D(xy,$2 _y2) D{xyzaz(aj2 _y2)}
B3 & 2F3 x(2? - 3y?),y(32* — y?)}
E, ®2%F,
Cn Cz Sn Dn Dnh, Dnd Cn'u Cnh (0] 1 129
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Co T9

T 9.6 Symmetrized bases

§16-6, p. T4
Co ljm) ¢ I
A 00) 1 49
B [11) 1 +9
’Fy |11) 1 +9
1B, 22) 1 49
%, 23 1 49
1B, 133) 1 +9 T 9.7 Matrix representations
2R, 133) 1 19 Use T94 . §16-7, p. 77
o 44) 1 49
%, W4T 1 49
1B, 1Ty 1 19 T 9.8 Direct products of representations
/ 22 §16-8, p. 81
’E 2 |5 3) 1 +9
22 1 2 1 2 1 2 1 2
15 |3 3> 1 19 Cg A Fy Fq Fo Fo Fs F3 FEy Fy
3/2 55
, / i; A A B, 2B, B, 26, By 2B; ‘E, 2E,
Es /o 155) 1 +9 15, B, A By 2E, 'E, 2B, 2E, 2B,
1E | 5 E) 1 +9 2E1 2E2 lEl 2E3 1E2 2E4 lEg 1E4
e E B, A B, °E, °B; °E
2 125y ) L9 R 1 By B By TEy
5/2 e Eo Ey, "En By B Ej
Bz /s 1z 3) 1 +9 'F5 BEs A By By
it 2 1 1 1
2 77 1 49 E3 Es “Fy R
7/2 |3 §> 1E4 2E1 A
A9/2 |§ §> 1 +9 2E4 I‘E‘1
—=>
T 9.8 Direct products of representations (cont.)
Co By %Evja ‘Bz ?Espn 'Esps Esps 'Ers 2Ern Ag)s
A By %Evjs ‘Bz %Espn 'Esgs 2Esps 'Ern 2Ern Ag)s
'Fy *Evs ‘B3 2Es;s 'Evjs *Esjs 'Erpp A9 'Esps Ergs
’Fy B3y 'Evja 2Eijs 'Espy 2Eqjp 'Esje %Espn Agje 'Erjo
'E, "B *Es;s 'E7s *Evjs 'Eijs Agp *Erjn ?Esps 'Espo
E, 'Bsso 2Esjs 'Evn *Ern Agjs *Evjs 'Esjs 'Erjs *Espo
'Es *Es;2 'Erjs Agjs 'Esjp "Erjs PErjn 'Espp 'Eiys 2Esp
’F3 *E7/s 'Esjs 2Esjs Agje 'Erjp 'Evjp %Eip %Esps 'Esps
By 'Brjo Agjs *Erjp %Espy 'z 'Esps Espe 2Erjs 'Eygo
’E, Agp 2Erja 'Es;y 'Erjn PEspy ?Es;s 'Evjs ‘Bz %Erps
By 2 A B 2B, B B, By B, B
’E1 /2 By B, By B, By By, *E; By
By g, A 2%, E, °2E, °2E, 2B
’Es /s b P O By B, Bj
s B, A B B, B,
Es /o By B3 By B,
1E7/2 2E2 A 2E1
’E7 /2 ‘B, By
Ag/z A
130 Cn Cz Sn Dn Dnh Dnd Cn'u Cnh o
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TO9
T 9.9 Subduction
(descent of symmetry)
§16-9, p. 82
Cy Cs
A A
1E1 lE
2E1 2E
B, ’E
2E2 lE
1B A
2Fy A
1E4 1E
2E4 2E
Ey/o Ey/o
’E1 /2 E1 /2
'Fs/s Az o
*Es /s Az /o
'Es o E1 /s
*Es /o By /o
1E7/2 2E1/2
*E7 )9 By /o
Ag/z Az o
T 9.10 Subduction from O(3) § 16-10, p. 82
J Co
In (2n+1)A®2n('Ey & %E1 & 'E; ® B, @ 'Es ® %E3 @ 'Ey @ %))
9n+1 (2n+1)(A®E; ©2%E1) ®2n (1B ®%Ey @ B3 @ %E3 & 'Ey @ %Ey)
9n +2 (2n+1)(A®'E; @ %E, @ 'Ey © %Ey) @ 2n (\E3 @ %FE3 © 1B, @ %Ey)
9n +3 (2n+1)(A®'Ey @ %1 © 'Ex ® 2B, ® 'E3 @ ?E3) @ 2n (‘B4 @ %Ey)
In+4 2n+1)(Ad'Ey 6 °E 6 By 6B, & 'E3 @ B3 @ 'Ey & %Ey)
In+5 (2n+1)(A®'Ey ®°E @ 'Ey & %Fy @ 'E3 @ %E3) @ (2n + 2)(*Ey @ °Ey)
I+ 6 2n+1)(A®'E, @ %E, @ 'Ey ®%E;) @ (2n+ 2)('Es © 2E3 © 'Ey @ %Ey)
I+ 7 2n+ 1) (A 'Ey®2%E1) @ (2n+2)('E; ® 2By @ 'E5 ® B3 & 'E4 @ °Ey)
In + 8 2n+1)A® 2n+2)("E, @ %E & 'Ey @ %F, @ 'Es @ 2Fs @ 'Ey @ %Ey)
In + % (271 + 1)(1E1/2 (&) 2E1/2) D 2n (1E3/2 D 2E3/2 D 1E5/2 (o) 2E5/2 (&) 1E7/2 ) 2E7/2 &) Ag/Q)
In + % (2n + 1)(1E1/2 S5 2E1/2 S5 1E?,/2 D 2E3/2) & 2n (1E5/2 S3) 2E5/2 D 1E7/2 D 2E7/2 © Ag)2)
In + 2 (2n +1)(*E1 /2 ® %F1/2 © 'E3/2 ® *E3)2 ® 'Es 2 @ *E52) @ 2n (*E7/2 @ 2E7/9 ® Ag))
In + % (277, + 1)(1E1/2 S>) 2E‘1/2 &) 1E3/2 S5 2E3/2 ©® 1E5/2 D 2E5/2 D 1E7/2 D 2E7/2) D 271A9/2
In+ 2 (2n +1)("Erj2 © °E1y2 @ 'Esj2 @ *Ey2 @ 'Esjp & s ja ® 'Eryp © °Erj2) © (20 +2) Ay
In+ 4 (2n + 1)(*E1 /2 ® %F12 ® B30 ® 2E3 )9 ® 'Es 2 @ 2B /2) @ (2n + 2)(*E7 )2 ® %Er /2 @ Ag)2)
In+5 20+ 1)('Eijp ® By @ 'Eyyp © *Eypa) @ (2n+ 2)(\Bs 2 © *Es 2 © ey @ *Er s © Ag o)
In + % (2n + 1)(1E1/2 D 2E1/2) D (2n + 2)(1E3/2 5% 2E3/2 @ 1E5/2 ® 2E‘5/2 @ 1E'7/2 2] 2-E7/2 D A9/2)
In+L  (2n+2)("Erj2 ©°%E12 ® B3y & B3y & 'Es 2 @ %Esja @ 'Erjs @ 2Erjs @ Ag2)
n=20,1,2,...

T 9.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

Cy

Cn Cz Sn Dn Dnh Dnd Cn'u Cnh o I
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10 IGl=10 [C|=10 |C]=20 T 10 p. 107 Cy

(1) Product forms: Cs ® Cs.
(2) Group chains: Ciop D C10 D Cs, Cion D Ci10D Cz, Ciop D C10DCs, Ciov D Cio D Cy,
DitgD2Ci10DCs, Di19DCioDCz S20DCi0DCs, Sz D CioDCo.
(3) Operations of G: E, . OF, B o, O, 02, €, O, G-
(4) Operations of G: E, Cf,, CF, C3F, C¥F, Cy, C2-, Ci7, C5, Cpy,
B, &k, oF, &, &, 0, €, 8%, 65, O
(5) Classes and representations: |r| =10, [i|=0, |I| =10, |7] = 10.

F 10 See Chapter 15, p. 65

— &

G
x L
/j;
NI L

J
\
J

A\

Examples:

T 10.1 Parameters T 10.2 Multiplication table T 10.3 Factor table
Use T 39.1. § 16-1, p. 68 Use T 39.2. § 16-2, p. 69 Use T 39.3. § 16-3, p. 70
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T 10 Cio
T 10.4 Character table §16-4, p. 71
Cio E cf, cf cif ot ooy, o0 oy Cy  COp T
A 1 1 1 1 1 1 1 1 1 1 a
B 1 -1 1 -1 1 -1 1 -1 1 -1 a
By 1 —e 0 =6 S | € —o* 1) —c* b
’E, 1 —e 6 =6 e -1 ) 5 —e b
B, 1 §* €* € ) 1 5* €* € ) b
2F, 1 ) € €* o* 1 1) € €* o b
1B, 1 -6 € —e o -1 of  —¢€* € -0 b
2Fy 1 -4 € —c* o* -1 1) —€ et =0 b
By, 1 € §* ) e 1 € L) €* b
’E, 1 €* ) 5* € 1 €* ) 5* € b
1E1/2 1 i0*  —e* —ie ) i o* ie* —e —i0 b
2E1/2 1 —i6 —e ie* of  —i 6 —ie —¢€* io* b
1E3/2 1 ie* —60 —id* € i €* i6 =0 —ie b
2E3/2 1 —ie =4 i0 € —i e —id* =94 ie* b
'Es o 1 i -1 —i 1 i 1 i -1 —i b
2Es 9 1 - -1 i1 -1 - -1 i b
1E7/2 1 ie —0* —id €* i € io* -6  —ie* b
2E7/2 1 —ie* -0 io* e —i e —i6 =6 ie b
1E9/2 1 6 —e —ie* o i é ie —e* —id* b
*Eg/2 1 —i6* —e* ie 5 -1 6 —ier —e id b
d = exp(27i/5), € = exp(47i/5)
T 10.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
010 0 1 2 3
A =h DZ,RZ $2+y2,D22 (x2—|—y2)z,mz3
B
1E1 @2E1 D(xay)v(vaRy) D(vayz) {x(x2—|—y2),y(x2—|—y2)},D(x22,yz2)
B, ® 2B, °(zy, 2 - y?) Hayz, 2(a® — y?)}
'Bs & 2E3 Ofa(e® = 3y?), y(32% — y?)}
By @ 2By
T 10.6 Symmetrized bases §16-6, p. 74
Cio g m) L % Cio |ljm) L H
A 00) 1 %10 By A1 10
B 55) 1 £10 Ei0 133) 1 £10
B 111) 1 +10 By 23) 1 +10
B, 1T) 1 10 Eap |23 1 10
B,  ]22) 1 =£10 Espp 133 1 #£10
’Es 22) 1 +10 Es;, 133 1 %10
1E; 133) 1 £10 'Brp 12 1) 1 £10
2E;  |33) 1 %10 Bry 12Ty 1 £10
By 44 1 £10 Bop 193 1 +£10
By |44) 1 =£10 Eo; 133) 1 £10
Cn Cz Sn Dn Dnh, Dnd Cn'u Cnh o I 133
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Ciuo

T 10

T 10.8 Direct products of representations

§16-8, p. 81

Cio A B 1E1 2E1 1E2 2E2 1E3 2E3 1E4 2E4
A A B B, 2%, B, 2B, E; 2E; E, Z%E,
B A E, 2B, E; 2%E; Ey, 2E, By 2F;
N gy, A 2E; °E, 2B, B, 'E5 B
2, ’E, By By B, By B 2B,
1B, £, A 25, B 2, E,
’F, g, B E; 2E, 'E
1R B, A 2B B
2E3 1EI4 2E1 1EI3

T 10.7 Matrix representations ;E4 'Es 2A

Use T 10.4 &. § 16-7, p. 77 By 2

%>

T 10.8 Direct products of representations (cont.)

Cio ‘B 2Eijs B3 Espy 'Espy %Esgs 'Erjn Ere 'Eopn Eg)o

A 'Eyj *Ervj2 'Bype ?Espn 'Esps 2Es;s 'Erjs *Erjp 'Egja %Egpo

B ’Egjs 'Eqss *E7/5 'E75 2Esjy 'Esjs *Es;n 'Esjn ?Eijs 'Eyp

Ey ’Eijs 'Espp *Es;y 'Evs *Esjy 'Ers *Egps 'Esjy ?Erjs 'Egpo

’E\ *E3/2 'Eijs 2Eip 'Espp "Erjs 'Espn %Espp 'Egje *Egpn 'Erp

'Fy B3/ %Esja 'Erjp *Eis 'Eijs *Egys 'Egjs *Esjy 'Esjy %Erp

) 'Bs;o °Esja 'Bvp %Ern 'Egps Eijs 'Esjy *Egjs 'Erp %Espo

'Es ’Ez9 'Esjy *Es;s 'Egps *Egjp 'Eijs *Eijs 'Erjn ?Es;s 'Espo

’Es ’Es;s 'Eqjp 2Egjy 'Es;n Evjy 'Egjy *Erjn 'Eijy ?Esps 'Espo

'Ey "By *Er/5 'Es;y *Egjn 'Erjs *Es;n 'Evjs ?Es;s ‘B 2B

’E, 'Er/5 %Egjs 'Egjp *Esjy 'Esjs *Erje 'Esjy ?Evjs 'Evjp %Esp

B, /2 &N A 1EL ’E, 1R, g, 2F, g, B ’E,

’E, /2 F g, EIoN °E, 2E, ’E, 1B, g, B

DR /2 2F, A 2, 2E, B 2, 1B, B,

2B, /2 1B, B, 1B, 1B, B 2B, 2E,

s B A B 2, 25 'K

o B B, 2B B, B

By B, A B, 2B,

E7/2 By By B

Eog /o B,

T 10.9 Subduction (descent of symmetry)

§16 9, p. 82

Cio Cs G, Cio Cs C,

A A A 1E1/2 E1/2 1E1/2

B A B 2E1/2 E1/2 2E1/2

'Fy 'y B 'Es /o B35 'Eyjo

’Ey ’E1 B E3 /o Eso °Erjo

1E, By A 'Es o Asj2 'Eqjs

E, B, A Es/2 Asja PEqjs

'Fs 'F, B Bz Esjy 'Eijs

’F3 ’E; B *E7/2 Es5 By o

By B, A 'Fy/o Evjo By

By By A Eg/2 Eyj/y °Eyjo
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T 10 Cio

T 10.10 Subduction from O(3) § 16-10, p. 82
J Cio

10n 2n+1)A®2n (B @ By ©%E) @ 'By © %Ey @ 'E3 @ °Es @ By @ °Ey)

10n+1 2n+1)(A®E, ®%E) ©2n (B & 'y ® %Fy @ B3 @ 2E3 @ 'E4 @ %Ey)

10n + 2 2n+ 1) (A®E| @ %E; @ By ®%Ey) @ 2n (B @ B3 @ °E3 @ 'Ey @ %E))

10n + 3 2n+1)(A®E; ®2%E) @ By ® %Ey ® 'E3 © %E3) @ 2n (B @ 'Ey @ %Ey)

10n + 4 2n+1)(A®'E, ©°%E © By ®2%E, ®'E3 §%E3 @ 'E, ©%Fy) @ 2n B

(
(
( (
( (
( (
10n+5 2n+1)(AD'E, 0% @By 0B, 0 B3 0%E3 0 'E, ©%E,) @ (2n +2) B
10n + 6 2n+1)(A®'EI ®&%F & 'Ey ®%Ey @ 'E3 ©%E3) @ (2n+ 2)(B @ 'Ey & %))
10n 47 2n+1)(ADE; ©%E, @ 1By ® %FE2) @ (2n +2)(B @ B3 @ %FE3 @ 'Ey @ %Ey)
10n + 8 2n+1)(A®E;9%E) ® (2n+2)(B® 'Ey ®2%E; © B3 @ %F3 © 'Ey © %E))
10n+9 2n+1)A®(2n+2)(Bo B, ©%FE, & 'Ey ©%E, © B3 ®2%E3 © 'E, @ °E))
10n + 3 (2n—|—1)(E1/2EB2E1/2)@
2n ("E3 o @ B35 © 'Es s © *Es o ® 'Erjs ® *Er/s ® 'Egjs ® °Eg)2)

10n + 2 (2n+ (E12 ® 2E1 /2 @ E3po @ 2By o) @
2n ("Es 3 @ *Es )5 @ 'Er)s © *Er)2 ® 'Egj ® *Ey))
('Erj2 ®%E1j2 ® 'Esjp @ %E3)0 @ 'Es s @ 2Es)0) ®
2n ("Er 5 @ *Er )5 @ 'Eg s @ 2Ey)2)
('Erj2 ®%B12 ® 'Esjp @ %30 @ 'Es )y @ *Es s @ 'Erjs @ *Er)s) @
2n ("Eg s @ *Ey)2)
10n + 3 (2n+1)("Erj2 ®°E1)2 @ 'Es)y ® °Es)y @ 'Es)s @ °Es s @ 'Erjs © *Erj @ 'Egjs @ *Ey)2)
0n+5 20+ 1)("Erj @ °E1j2 ® By & °Esjy @ 'Esjy © *Es s @ 'Erjs ® *Erys) ©

(2n + 2)(1E9/2 D 2E9/2)
10n+1  2n+1)(Ei)s ®°E1)s @ Esjp @ %Esjn @ Esjp @ 2Esp0) @

(2n+2)("Er/2 ® °Eq/2 ® 'Eg /2 ® *Ey)2)
10n + 12 (2n+ 1)("E1 2 ®°E1 /2 @ 'Es )0 @ %F5)0) @

(2n 4 2)("Es /2 © *Es5)2 © 'Brj2 © *Erj2 © 'Egja @ *Ey)2)
0n+5  @Cn+1)('Bijp @By @

(2n+42)("E3/2 ® °E3/2 ® 'Esj2 ® °Es )2 ® 'Erj2 @ °Erjy ® 'Eg )2 @ *Ey)2)
10n+3 (20 +2)("Bij2 @ °Brjs @ 'Bypo ® *Bypo @ 'Bs g @ *Es o @ 'Eqjp @ *Eqjp @ 'Egyp @ *Ey o)
n=20,1,2,...

1
10n + 2 (2n+1
1

)
)
10n+ % (2n—|— )
)

T 10.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

C, C; Sn D, D, D,q Cho Cun (0] 1 135
137 143 193 245 365 481 531 579 641






The improper cyclic groups C; and C,

C, T 11

Cs T12

p. 138
p. 140

Notation for headers

Items in header read from left to right

SO W N

U

~

Hermann—Mauguin symbol for the point group.
|G| order of the group.

|C| number of classes in the group.

|5| number of classes in the double group.
Number of the table.

Page reference for the notation of the header, of the first five subsections below
it, and of the footers.

This symbol indicates a crystallographic point group.
Schonflies notation for the point group.

Notation for the first five subsections below the header

(1) Product forms
(2) Group chains
(See pp. 41, 67)

(3) Operations of G
(4) Operations of G

(5) Classes and
representations

Direct and semidirect product forms. ® Direct product. @ Semidirect product.
Groups underlined: invariant.

Groups in brackets: when subducing one or more of the representations in the
tables to these subgroups in the setting used for them in the tables a change of
bases (similarity transformation) is required.

Lists all the operations of GG, enclosing in brackets all the operations of the same
class.

Lists all the operations of é, enclosing in brackets all the operations of the same
class.

|r] number of regular classes in G (p. 51).

|i| number of irregular classes in G (p. 51).

[7] number of irreducible representations in G.

|f| number of spinor representations, also called the number of double-group
representations.

Use of the footers

Finding your way
about the tables

Each page of the tables contains a footer giving the ordering of the group types
listed in the tables. The current group type is recognized because it carries no
page number under its name. On opening the tables at any page you should then
see at a glance whether to move backwards or forwards to find the group type
desired. More precisely, the page number for the group type desired gives the
page, like the present one, which carries the contents for the group type wanted.

C,
107

C;

Sn Dn Dnh Dnd Cm; Cnh o I 137
143 193 245 365 481 531 579 641



T IGl=2 |C]=2 |C|=4 T 11 p. 137 | C,;

(1) Product forms: none.

(2) Group chains: C33, DC; DC;, S14DC; DCy, S10DC;DC;, S¢DC; DC;.
(3) Operations of G: E, 1.

(4) Operations of G: E, i,

E, 7

(5) Classes and representations: |r| =2, [i|=0, |[I|=2, |I~| =2
F 11 See Chapter 15, p. 65

\ )

Z

y

: > X >

4
Examples: Staggered CIBrHC—CHBrCl.
T 11.1 Parameters T 11.2 Multiplication table T 11.3 Factor table
Use T 31.1. § 16-1, p. 68 Use T 31.2. § 16-2, p. 69 Use T 31.3. § 16-3, p. 70
T 11.4 Character table T 11.5 Cartesian tensors and s, p, d, and f functions
§ 16-4, p. 71 § 16-5, p. 72
Ci E 7 T Ci 0 | 2 3
A, 11 a Ay "1 R, Ry,R. U"e?2,°22
Ay 1 -1 a Dzz,9yz, Ozy
Al/Z,g 1 1 a A’u Da:) Dya Az stvxyz)nxzz)nmzyl y3>
Ar/2u 1 -1 a Byz2, 9222, 422,923 Pzyz
138 Cn Ci Sn Dn Dnh Dnd Cnv Cnh 0] I

107 143 193 245 365 481 531 579 641



T11 C;

T 11.6 Symmetrized bases

§16-6, p. 74

Ci g m) L I

A, 00) 2+l

A, 110) 2 +1

Avjag 123 1 +1 _ _
Al Ly 1 1 T 11.7 Matrix representations

Use T11.4 . §16-7, p. 77

T 11.8 Direct products
of representations

§16-8, p. 81
C; Ag Au A1/2,g Al/?,u
Ag Ag Au A1/2.,g A1/2,u
Ay Ag Arjpu Azg T 11.9 Subduction (descent of symmetry)
A2, Ag Ay §16-9, p. 82
1/2,u Ag

No proper subgroups.

T 11.10 & Subduction from O(3)

§ 16-10, p. 82
J C;
2n (An+1) A,
S T 11.11 Clebsch-Gordan coeffici
. ebsch—Gordan coefficients
n=0,1,2,...
Cn Cz Sn Dn Dnh Dnd Cm; Cnh (0) I 139

107 143 193 245 365 481 531 579 641



m IGgl=2 |C]=2 |C|=4 T 12 p. 137 O C;

(1) Product forms: none.
(2) Group chains: C73 DC; DC;1, CspDC;DCy, C3,.D0C,DCi, Cun DG, DCy,
C7 D(C:)DCy, Csy D(Cy)DCy, Cs D(Cy)DCi, Cs D(Ce)DCa.
(3) Operations of G: E, oy,.
(4) Operations of G: E, o,
E, G

(5) Classes and representations: |r| =2, [i|=0, |I|=2, |f| = 2.

F12 See Chapter 15, p. 65

O

c» s

Examples: Non-linear NOCI, planar N3H, planar BFCIBr, C;H5NOs5.

T 12.1 Parameters T 12.2 Multiplication table T 12.3 Factor table
Use T 31.1¢. § 16-1, p. 68 Use T 31.2 6. § 16-2, p. 69 Use T 31.3 ¢. § 16-3, p. 70

T 12.4 Character table

§ 164, p. 71
C. 5 o = T 12.5 Cartesian tensors and s, p, d, and f functions
§ 16-5, p. 72
A’ 1 1 a
A" 1 = a C. © 1 2 3
1E1/2 1 i b A’ o1 Dx,”y,Rz Dm2,y2,ﬂz2’umy D.,L.S,xy2,l:lxzz’Dx2y’y3,ﬂyz2
2E1/2 1 —i b A DZ, Rx, Ry DZ;L‘, Dyz Dx2z, yZZ} DZ3, U$yz
140 Cn C; Sn Dn Dnh Dnd Cnu Cnh 0] I

107 143 193 245 365 481 531 579 641



T 12 Cs

T 12.6 Symmetrized bases

§ 16-6, p. 74
Cs ljm) L K
A |00) 111) 2 £2
A" 10) 121) 2 £2
By /s I%Q |%%>. 1 +2
2 11 1T\ T 12.7 Matrix representations
Bip b3l las) I *# Use T 12.4 4. § 16-7, p. 77
T 12.8 Direct products
of representations
§16-8, p. 81
C. A A" 1E1/2 2E1/2
A’ Al A 1E1/2 2E1/2
! /2 1 .
‘14/ A Evp By T 12.9 Subduction (descent of symmetry)
B2 AT A §16-9, p. 82
2E1/2 A” )

No proper subgroups.

T 12.10 Subduction from O(3)

§ 16-10, p. 82
J C
n (n+1)A @nA” o
nt 1 (n+ 1)(Ey o 2B, ) glié?i}a,ijéZECh—Gordan coefficients
n=0,1,2,...
C, C; S, D, D, D,q Co C.n O I 141

107 143 193 245 365 481 531 579 641






The improper cyclic groups S,,

S, T 13
Se T 14
Sq T 15
S, T16
S, T18
S T19
S T20
S,y  T21

CTTOTTTTTTT

144
146
149
152
156
161
166
173
181

Notation for headers

Items in header read from left to right

Sl W

\‘
[

Hermann-Mauguin symbol for the point group.
|G| order of the group.

|C| number of classes in the group.

|C| number of classes in the double group.
Number of the table.

Page reference for the notation of the header, of the first five subsections below
it, and of the footers.

This symbol indicates a crystallographic point group.
Schonflies notation for the point group.

Notation for the first five subsections below the header

(1) Product forms

(2) Group chains
(See pp. 41, 67)

(3) Operations of G
(4) Operations of G

(5) Classes and
representations

Direct and semidirect product forms. ® Direct product. @ Semidirect product.
Groups underlined: invariant.

Groups in brackets: when subducing one or more of the representations in the
tables to these subgroups in the setting used for them in the tables a change of
bases (similarity transformation) is required.

Lists all the operations of GG, enclosing in brackets all the operations of the same
class.

Lists all the operations of C~v', enclosing in brackets all the operations of the same
class.

|r] number of regular classes in G (p. 51).

[i| number of irregular classes in G (p. 51).

|I| number of irreducible representations in G.

|I~ | number of spinor representations, also called the number of double-group
representations.

Use of the footers

Finding your way
about the tables

Each page of the tables contains a footer giving the ordering of the group types
listed in the tables. The current group type is recognized because it carries no
page number under its name. On opening the tables at any page you should then
see at a glance whether to move backwards or forwards to find the group type
desired. More precisely, the page number for the group type desired gives the
page, like the present one, which carries the contents for the group type wanted.

C,
107

C;
137 103 245 365

Sn Dn Dnh Dnd Cnv Cnh o I 143
481 531 579 641



i Gl=4 [Cl=4 |C]=8 T 13 p. 143 | Sy

(1) Product forms: none.
(2) Group chains: Cy4p D S4D Cs, D23 DS4DCs, Sy D S4D Cy,
(3) Operations of G: E, S;, Cs, Sf.
(4) Operations of G: E, S;, Cy, 8
E, §4_, 5’2, gi-
(5) Classes and representations: |r| =4, [i|=0, |I|=4, |I|=4.

F13

S12 284D Cy.

See Chapter 15, p. 65

. Va
5
Examples: Tetraphenylmethane C(CgHs)a.
T 13.1 Parameters T 13.2 Multiplication table T 13.3 Factor table
Use T 33.1. § 16-1, p. 68 Use T 33.2. § 16-2, p. 69 Use T 33.3. § 16-3, p. 70
T 13.4 Character table
§ 16-4, p. 71
S4 E Sy C» Sf T
A 1 1 1 1 a
B 1 -1 1 -1 a
D) 1 -1 -1 1 b
g 1 1 =1 = b
By 1 & i b
2E1/2 1 € | i b
1E3/2 1 —e* -1 —¢€ b
2E3/2 1 —€ 1 —€ b
€ = exp(27i/8)
144 C, C; 54 D, D, | B Cup Cun o I
107 137 193 245 365 481 531 579 641




T 13 Sy
T 13.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
S 0 1 2 3
A o1 R, % 4 y?,822 O2(x? — y?), ayz
B o, DInyz,ny ($2+y2)Z7D23
'E®’E °(z,9),(Rey Ry)  P(ewyyz)  O(22?,y2%), {x(2® + y7), y(2® + y°)},
= 2 o 2 2
{z(2® = 3y%),y(32* — y*)}
T 13.6 Symmetrized bases § 16-6, p. 74
Se  im) Looop Sy ljm) Looop
A 00y [32) 2 44 B ALy 1835 1 14
B 10) 220 2 44 B 133 139 1 4
B T 21) 2 44 Eap 123 1EL® 1 4
2 11 2T) 2 44 By 123 D1 44
T 13.7 Matrix representations
Use T 13.4 &. § 16-7, p. 77
. . T 13.9 Subduction

T 13.8 Direct products of representations (descent of symmetry)
§16-8, p. 81 §16-9, p. 82
S4 A B 1.E 2E 1E1/2 2E1/2 1E3/2 2E3/2 S4 02
A A B 1E 2E 1E1/2 2E1/2 1E3/2 2E3/2 A A
B A E B Byy 2y, By 2B B A
g B A 2By, 'Eyy 2By, By ) B
2B B 2By, By 2Bz Eip g B
1By /s B A °%6 B By 2By
2E1/2 2E B lE 2E1/2 1E1/2
E3/o 'E A B3/ ’E1 /2
*Es /2 ’E Es)o By o
T 13.10 Subduction from O(3) § 16-10, p. 82
J Sy
4n 2n+1)A®2n (B 'Ea2E)
dn +1 2nA® (2n+1)(BeEa%E)
4n +2 2n+1)(A®'E®?E)® (2n+2) B
4n +3 (2n+2)(Ad'E®?E)® (2n+1)B
dn + 3 (2n+ 1)("Ey /2 ® °E1y2) @ 20 ('E3)s @ *E3)2)
4n—|— % (2n—|— 1)(1E1/2@2E1/2@1E3/2 @2E3/2>
dn+3 (2n 4+ 1)("E1/2 ® %E12) ® (2n 4 2)(*E3 2 @ %E3)2)
4’[’L+ % (27’L+2)(1E1/2 EBZEl/Q @ 1E3/2 @2E3/2>
n=0,1,2,...
T 13.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

Cn Cz Sn Dn Dnh Dnd Cnv Cnh 0] I 145

107 137 193 245 365 481 531

579

641



3 IGl=6 |C|=6 |C]=12 T 14 p. 143 O S¢

(1) Product forms: C3® C;.
(2) Group chains: T D (S6) D Ci, Tr D(S6) DCs, Cen DSe¢DCi, CenDSsDCs,
D3;086DC;, D3sDS6DC3, S18DS¢DC;, S18DSsDCs.
(3) Operations of G: E, Cf, C3, i, S5, S§.
(4) Operations of G: E, Cf, Cy, i, S5, S&,
B OO, % 55, 5.
(5) Classes and representations: |r| =6, [i|=0, [I|=6, |f| = B.

F14 See Chapter 15, p. 65

—+
%

Examples: Puckered CgHg with the six H partly rotated (not the ground state of this molecule).

T 14.1 Parameters T 14.2 Multiplication table T 14.3 Factor table
Use T 35.1. § 16-1, p. 68 Use T 35.2. § 16-2, p. 69 Use T 35.3. § 16-3, p. 70
T 14.4 Character table §16-4, p. 71

Se E o o i & 5 T

Ay i 1 1 1 1 1 a

B, 1 g € 1 et € b

2Eg 1 € €* 1 € € b

Ay, 1 1 1 -1 -1 -1 a

1B, il €* e =1 —e —¢ b

’Fy 1 € e —1 —e —¢ b

1E1/2,g 1 —e —¢ 1 —€ —¢ b

2E1/z,g 1 —e —¢* 1 —e —¢ b

Asjsy 1 -1 -1 1 -1 -1 a

1E1/2,u 1 - —e -1 €* € b

2E1/2’u 1 —f —€* -1 € e* b

Ag/gyu 1 -1 -1 -1 1 1 a

e = exp(27i/3)

146 C. C; Sy Dy, D,» Dy Cav Cnn (0) I
107 137 193 245 365 481 531 579 641




T 14 Sé

T 14.5 Cartesian tensors and s, p, d, and f functions § 16-5, p. 72

Ss 0 1 2 3

A, o1 R, z? +y?, 022

lEgeBQEg (szRy) D(xyaz27y2)7m(zx7yz)

Ay Pz P (a? —321) y(3z 2)7(56 +y) 2

'E. @ %E, “(z,y) {z(e® +9?),y(2? )}7 (x2%,yz ),
Hayz, Z(x -y}

T 14.6 Symmetrized bases

§16-6, p. 74

Se ljm) L Iz
A, |00) 2 43
B, 122) 2 £3
B, 122) 2 4£3
A, |10) 2 43
B, 111) 2 43
’E, 111) 2 4£3
B, 13D 1 43
’F1 /2, 111 1 +£3
Azjag 12 3) 1 43
By 20 I%E' +3
Evj2u 3 %>. 1 +3
Az /o 1325 1 £3

T 14.7 Matrix representations

Use T14.4 4. §16-7, p. 77

T 14.8 Direct products of representations 16-8, p. 81
P p
Se Ag 1lag 2Egg Ay 1Eu 2Eu 1£§‘1/2,g E1/2 g A3/2,g E1/2 u E1/2 u A3/2,u
149 Ag ;Eg 2-Eg 114u ;Eu 2Eu 1E‘1/2,g E1/2 g 1143/2,9 ;El/Q,u E1/2 u iA3/2,u
2Eg E 114g QEu E.y 114u E1/2,g A3/2,g E1/2,g E1/2 u 1143/2,u 2E1/2 U
B, E, “BE, lAu 2Eu 1143/2,g Evj2, “Eiag 1‘43/2,11 Ei120 “Erj2u
{1u Ay 2Eg Ey 2E1/2,u Erjou Asjou 2E1/27g E1 2, 1143/2,g
Eu Eg Ag E1/2,u A3/2,u 1/2,u E1/2,g 3/2,9 E1/2,g
2Eu 1Eg AS/Q,u 1-El/Q u 2E’1/2,u 3/2,9 1E1/2 g 2-El/2,g
1E1/2 9 2Eg 1Ag ;Eg Eu 11411, ;Eu
E1/2 g Eg fg %u 2§u f’u
3/2,9 g u u w
" ’E A )
E1/2,1 9 1Eg 2Eg
1/2,u g 9
Az/2.u Ag
Cn Cz Sn Dn Dnh Dnd Cnv Cnh o I 147
107 137 193 245 365 481 531 579 641



S T 14

T 14.9 Subduction
(descent of symmetry)

§ 169, p. 82

Se C; Cs
A, 4, A
E, A, E
2B, A, E
A, A, A
B, A, g
’E, A, ’p
'Fi/a.g Aijag 'Erjo
F1/a,g Aoy 2Erpo

Az/.q Aijag Az
Ejon Aijou 'Erpo
Eripu Ao 2Eiyo
u Al/Z,u A3/2

T 14.11 Clebsch—Gordan coefficients
§16-11 &, p. 83

T 14.10 & Subduction from O(3)

§ 16-10, p. 82

J Se

6n (4n+1) Ay @ 4n (E, @ *Ey)

6n + 1 (4n +1)(A, @ 'E, @ °E,)

6n + 2 (4n+1) Ay @ (4n +2)('E, & E,)

6n + 3 (4n +3) A, @ (4n +2)(*E, ©%E,)
6n + 4 (4n +3)(Ay @ 'E, & %Ey)

6n+5 (4n+3) A, ® (4n+4)(‘E, ® °E,)
3n+ 3 (2n+1)("E1 )2,y ®°E1/2,4) ©2n Ag)s g
3n+3 (2n+ 1)("E1 /2,0 D *E1/2,4) ® (2n+2) Aza g
3n+2 (2n 4 2)(*E1 /2,9 B *F1/2,9 D Az/2,4)
n=20,1,2,...

107 137 193

Dnh Dnd Cnv Cnh o I
245 365 481 531 579 641



8 IGl=8 |C|=8 |C]=16 T 15 p. 143

(1) Product forms: none.

(2) Group chains: Cgp D Sg D C4, DsgD SgD Cy.

(3) Operations of G: E, S3=, CF, Sz, Ca, Sg, Oy, S3t.

(4) Operations of G: E, Sg—, C'j, Sg, Cy, Sg, Cy, S§+,
B, 5, 0F, %, Gy, 5, Cf, 8.

(5) Classes and representations: |r| =8, [i|=0, [I]=28, 7] = 8.
F15 See Chapter 15, p. 65
G S x
A / .O/
Z =
\\//y T
X
_’/"/L\ _/O‘\
i G Sy )
\ O/‘
Examples:
T 15.1 Parameters T 15.2 Multiplication table T 15.3 Factor table
Use T 37.1. § 16-1, p. 68 Use T 37.2. § 16-2, p. 69 Use T 37.3. § 16-3, p. 70
Cn Cz Sn Dn Dnh Dnd Cnv Cnh I 149

107 137 193 245 365 481 531

579 641




Ss T 15

T 15.4 Character table §16-4, p. 71

Sg E S cf Sy C S& ooy oS3t T

A 1 1 1 1 1 1 1 1 a

B 1 -1 1 —1 1 -1 1 —1 a

By 1 —€e i e -1 €* i —€ b

’E, 1 —e i e —1 e —i —€ b

1R, 1 -1 -1 i 1 -1 -1 i b

°F, 1 i -1 —i 1 i -1 —i b

1B, 1 e -1 —e -1 —¢ i € b

2Fy 1 € i —e* -1 —e —i €* b

By 16 e i i -6 e 5 b

2E1/2 1 5* 6* —15 —1 15* € 5 b

By 1 -6 —e =0 i -0 —¢ s b

2E3/2 1 io* —€* -0 —i —o* —€ —id b

1E5/2 1 i —€ o* i ) —e*  —i6* b

2E5/2 1 —i6* —€* o —i 0 —e i0 b

Bry 1 =5 € —i6* i 16 & -0 b

2E7/2 1 —5* E* 15 —1 —15* € —5 b

d = exp(27i/16), € = exp(27i/8)

T 15.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
Sg 0 1 2 3

A 51 R, 2% 4+ 2,522

B DZ (.’E2 +y2)2,D23

By & 2By (2, 9), (Re, Ry) {z(@® +9%),y(2* +y*)}, °(22®, y2?)
B, & °E, ®(ay, 22 — y?) ®{oyz, 2(o” — 1)}

‘B @ B3 22z, 2) a(@? - 3y*), y(32% — v*)}

T 15.6 Symmetrized bases

§ 16-6, p. 74

Ss ljm) Lo

A 00)  [54) 2 48

B 10)  |44) 2 48

B 11 43 2 +8 . .

. 1) [43) T 15.7 Matrix representations

£ th 43 2 =8 Use T 15.4 &. § 16-7, p. 77

1B, 22)  |39) 2 48 S P

2B, 22)  |32) 2 48

15, 21)  [33) 2 48

°E 121) 33) 2 8 T 15.8 Direct products of representations

B D3P 1 28 {165, p. 51

By 3L ZD® 1 48 Ss A B By 2B, B, B, B; 2

B 133y 1835 1 48 A A B 'By By 'Ey B, 'E; ’E;

2By o |3 3) 13 5)° 1 +8 B A 'E; *Ey B, B, By ?E

1 z% zzai . ‘B, 'E, A ’E3 ’E, ’E; B

Espp o l33)  lz3) 1 =8 2B, B, 'BEy 'BEs B B

°Es)2 153) 125)° 1 +8 'Ey B A °’E, B
T\ ’F B % 'E

Bz /s 12 ) 15 3) L +8 1E2 1E3 A1

2 77 11\® 3 2

B 33 |33 1 +8 2R, 2g,

—>
150 Cn Cz Sn Dn Dnh Dnd Cnv Cnh o I
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T 15.8 Direct products of representations (cont.)

T 15 Sg

T 15.9 Subduction
(descent of symmetry)

§16 9, p. 82

Ss 'Erp 2Erjp 'Ezpn %Espn 'Espy ?Esps 'Erpp 2Erg Sg C, C,
A "By 2Evjp ‘Bz Bz 'Esps Esps 'Ern 2Ergs A A A
B Bz 2Bz 'Es;y %Esjp 'Esjn ?Ez;n 'Ervp 2B B A A
By 2Brn 'Es;y By By %Es;s 'Evp 2Eip 'Esp By 'E B
E, Esjo 'Erjo *E75 'Esjy 2Eijy 'Esjs ?Espn 'Eijs ’Ey ’E B
'E, Esso °Esje 'Er/o ?Eijs 'Erjo 2Ern 'Esjs ?Espo 1B, B A
) Esjo 2Esjs 'Evjs ?Erjp 'Erps 2Eijs 'Espe Es)s ) B A
'F Eijo 'Esjs *Esjp 'Evp ?Esps 'Erps Ers ‘s ' 'E B
’Fs Esjs 'Eijs ?Eis 'Esjp *Erjs 'Esn ?Espn B ’Fs °’E B
By B3 A By By, By 'E, B B 'Ey s Erjy 'Eijs
Bl s B3 'By B3 By B B By *Frjs 'Bia By
'E3 /o E A *Fs B By 2B '3/ E3/y 'Ei)s
°Es3/2 By B By By, Ry Es o B3y *Ei)s
'Es /2 ’Fy A By B, 'Es o *Esso  'Eyjs
*Es o By By, Es Es /s 'Eys 2By o
'E7 /o ’Es A 'E7 /o ’E1js 'Evjo
’E7/2 B Er/2 'Eyjp ?Erjo
T 15.10 Subduction from O(3) § 16-10, p. 82
J Ss
8n (2n+1)A®2n (B 'EL @ %E, @ 'Ey © 2By @ 'E3 @ %F3)
8n+1 2n (A® By ®2%Ey @ 'Es @ %E3) @ (2n +1)(B @ 'Ey @ %E,)
8n+2 (2n+1)(A® By ©%Ey @ B3 @ %E3) @ 2n (B @ By @ %Fy)
8n + 3 2nA® (2n+1)(B @ 'E @ °Ey @ By @ By @ 'E3 & °F3)
8n +4 2n+1)(As'E16%E 6By 8 %E, @ 'E3 & %E3) & (2n+ 2) B
8n+5 2n+2) (A E; ®2%E3) @ (2n+1)(B& By @ %E) @ By @ %E»)
8n+6 (2n+1)(A®'E3 ®2%E3) ® (2n+2)(B @ 'E; @ °FE1 @ By @ %Es)
8n+7 (2n+2) (A 'E10%E @ 'E, 2B, @ 'E3 ®%E3) @ (2n+ 1) B
8n + % (2n + 1)(1E1/2 &) 2E1/2) P 2n (1E3/2 &b 2E3/2 SY 1E5/2 2 2E5/2 @ 1E7/2 D 2E7/2)
8n+ 3 (2n +1)(*E1 /2 ® %E1/2 ® 'E3 /2 ® *E3)2) ® 2n (*"Es 2 @ *Es5 )0 ® 'Er /2 @ 2By )2)
8n + g (2n + 1)(1E1/2 S¥) 2E1/2 > 1E3/2 ©® 2E3/2 (&) 1E5/2 S>) 2E5/2) @ 2n (1E7/2 ©® 2E7/2)
8n+ % (2n+ 1)("Ey /2 ® °E1 /2 @ 'E3/2 ® °E3 )2 ® 'Es )2 ® *Es )2 ® 'Eq o @ *Er)2)
8n + 2 (2n +1)('Ey )3 ©°E1/2 © 'Esjp © *Esja ® 'Esjz © *Es ) @ (20 + 2)("Erjz © *Erj2)
Sn+4 20+ 1)("Erjp ®Erjp @ 'Eyyp © *Eye) @ (2n+ 2)(\Es 2 © *Es 2 © ey @ *Er o)
8n + 173 (2n 4+ 1)(1E1/2 (&) 2E1/2) &) (2n + 2)(1E3/2 ) 2E3/2 ©® 1E5/2 ) 2E‘5/2 @ 1E'7/2 2] 2-E7/2)
8n + % (2n+2)("Ey ) @ 2E1/2 D 1E?,/2 D 2E3/2 ®'Esp @ 2Es/2 D 1E7/2 D 2E7/2)
n=20,1,2,...
T 15.11 Clebsch—Gordan coefficients
§16 11 &, p. 83
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5 IGl=10 |C]=10 |C]=20 T 16 p. 143 S0

(1) Product forms: Cs @ C;.

(2) Group chains: Cign D S10D Ci, Cion DS10DCs, Ds5a DS10DCi, Dsg D S10D Cs.
(3) Operations of G: B, OF, CF, €2, Cg, 1, Sty Siss B4y Sin -

(4) Operations of G: E, CF, C2*, €27, C5, i, S35, Sty STy, SiF,

o N4 2+ A~2—- -~ G3—  O—- o+ o3+
E, Cf, Cs%, C5~, C5, %, Sig» Stos 910> Sio -

(5) Classes and representations: |r| =10, [i|=0, |I|=10, Ifl = (0.
F 16 See Chapter 15, p. 65
\‘

B

Examples:

T 16.1 Parameters T 16.2 Multiplication table T 16.3 Factor table

Use T 39.1. § 16-1, p. 68 Use T 39.2. § 16-2, p. 69 Use T 39.3. § 16-3, p. 70
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T 16 Si0

T 16.4 Character table §16-4, p. 71
S1o E Ccf ¢t oc: ooy i Sy S Sfy Si T
A, 1 1 1 1 1 1 1 1 1 1 a
1Elg 1 o* €* € ) 1 o* €* € 1) b
QElg 1 1) € €* o* 1 1) € €* o* b
Foyg 1 €* ) 5* € 1 e 9 5 € b
By, 1 € 5* ) €* 1 € 5* ) €* b
A, 1 1 1 1 1 -1 -1 -1 -1 -1 a
B 1 o* €* € 6 -1 —6* —€ —e =0 b
°F1u 1 1) € €* 0 -1 -6 —e —€ =0 b
By, 1 €* ) 5* e -1 —e —6 =0 —¢ b
2Esy 1 € 5 ) e -1 —e =0 =5 —€ b
1E1/2)g 1 —€* ) 0 —e 1 —€* 1) 0 —e b
2E1/2,g 1 —e 0* 6 —€* 1 —¢ o* 6 —€* b
1E3/2,g 1 = € e =0 1 =4 € e =6 b
2E3/2,g 1 -0 € e —0 1 -0 €* € —0 b

5/2.9 1 -1 1 1 -1 1 -1 1 1 -1 a
E1)2.u 1 —€* ) 6 —e -1 e =0 =0 € b
E1 /2,0 1 —e 0* 6 —ef -1 e =0 —¢ € b
1E3/2,u 1 =6 € e =0 -1 6 —e —€* o* b
2E3/21u 1 -6 €* e -0 -1 6 —e* —e é b
As /2 1 -1 1 1 -1 -1 1 -1 -1 1 a
d = exp(27i/5), € = exp(47i/5)
T 16.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
S10 0 1 2 3
Ag Dl Rz .7;2 + y27 DZQ
1E1g &) 2E1g (Rz, Ry) H(zz,yz)
IEQg b 2E29 D(zy7 1'2 - y2)
Au DZ (x2+y2)Z,DZS
lEluEBQElu D(xay) {.17(372 +y2),y(ﬂc2 +92)}7D($22,y22)
1E2u 2 2E2u D{x(xz - 3y2)7y(3$2 - yQ)}a D{x/yz7 Z('rQ - y2)}
T 16.6 Symmetrized bases §16-6, p. 74
S1o ljm) L 1% S10 ljm) L Iz
A, 00) 2 45 B, 13D 1 45
By 21) 2 45 Erpg 13z 1 45
By |2T) 2 45 Esng  133) 1 45
By  [22) 2 45 2By |22 1 45
2By 122) 2 4£5 Asjag 12 5) 1 +£5
Au 10) 2 45 Bije 15T 1 £5
B 1) 2 45 Eijpu 133 1 £5
2B, I1T) 2 45 E3/9.4 |12 2)° 1 45
By [32) 2 45 Esjow 133" 1 45
By I32) 2 45 Asjp 133" 1 &5
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S10 T 16

T 16.7 Matrix representations
Use T 16.4 4. §16-7, p. 77

T 16.8 Direct products of representations §16-8, p. 81
SlO Ag 1Elg 2Elg 1E2g 2E29 Au 1E1u 2E1u 1E2u 2E2u
Ag Ag 1E‘lg 2E1g 1E2g 2EWQg Au 1E1u 2E1u 1E2u 2E2u
lElg 1-E2g Ag 2E2g 2-Elg 1-Elu 1E2u Au 2E2u 2E1u
2-Elg 2E2g 1-Elg IEZg 2E1u Au 2E2u lElu 1E2u
1ECQg Elg Ag 1E2u 2E2u 1E‘lu 2E1u Au
2E2g 1lalg 2E2u 2lalu 1E2u Au 1lzllu
Ay A, By, ?Eiy 'Eyy ?Esy
;Elu 1Fay, 2Ag ?Egg 1E1g
Elu EZg Elg E2g
1E2u QElg A!]
2E2u 1E1g

—>

T 16.8 Direct products of representations (cont.)

S10 1E‘1/2,g 2-El/Z,g 1Efﬁ’o/Q,g 2-E13/2,g A5/2,g 1-El/Q,u 2E‘1/2,u 1E3/2,u 2E‘S/Q,u
flg ;El/Q,g ?El/Q,g 1E3/2,g ?E3/2,g 545/2,g ;El/Z,u 1E1/2,u E3/2,u ?ES/Q,u
Elg E1/2,g E3/2,g A5/2,g E1/2,g E3/2,g El/Q,u E3/2,u A5/2,u E1/2,u
*Erg Esjag 'Bijeg By Aspg 'Bsjpg "Bz Bipw “Bisu Asju
'Eg Eyng  Asppg g “Bipg Biog Bspu Aspa “Bypa i
*Eag As/2g 3E3/2,g iE1/2,g ;E3/2,g “E1/2,9 As/2u 2E3/2,u 1E1/27u ;E3/2,u
flu 2E1/2,u 1E1/2,u E3/2,u 1E3/2,u ;45/2,u 2E1/2,g 1E1/2,g E3/2,g 1E3/2,g
2E1u 2E1/2,u 1E3/2,u 2145/2,u E1/2,u 1E3/2,u 2E1/2,g 1E3/2,g 545/2,9 E1/2,g
1E1u 1E3/2,u Evjou 2E1/2,u 2145/2,u 1E3/2,u 1E3/2,g Ei)24 2E1/2,g 2145/2,g
Eou Esjou  Asppu Eipu “Brpa Fipu g Asjpg “Esjpg Eip
Eou Asipw “Esppu 'Evpu 'Esjpu *Eijpu Asjpg Esjpg 'Eijag Bz
1E’l/Q,g 2Elg Ag 1E’lg 2E2g 1E2g 2E1u Au 1-Elu 2E2u
’F ) B ’F ’F A E E. F
1/2,9 1g 2g 1g 29 u lu 2u lu
1ECS/2 g 2£C2g Ag Elq 1Ejlu 1E2u 2E2u Au
2123/2,9 1E2g Elg 2E2u 2E1u Au 1E2u
A5/2,q Ag 1E2u 2E2u 2Eﬂlu 1E1u
1E1/2,u 2Elg Ag 1Elg 2E29
2E1/2,u lElg 1E29 Eig
1E’3/2,u 2E‘2g Ag
E3)2,u Fayg
A5/2,u
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T 16.9 Subduction
(descent of symmetry)

§16-9, p. 82

S10 Cz CS

A, A, A

15, 4, B

2Elg Ag EIoN

1By, A, £,

2E2g A, ’E,

A, A, A

B, A, Ey

2Ealu Au 2E1

1E2u Au 1E2

2E2u Au 2Eﬂ2

'F1/2.4 Aijag 'Erjo

F1/.9 Aijag 2Erjo

B39, Aijog 'Bsp

Es/.4 Aijag 2Espo

As /2. Aijag  Aspo

Eripouw  Aijpu Eip

2E1/2,u Ai /2.4 2E1/2

B3 /2. Ao By

E3 /2,4 Ao 2Espo

As 2. Ay Aspe

T 16.10 & Subduction from O(3) § 16-10, p. 82
J S10

10n (A4n+1) Ay @ 4dn (‘E1y @ °E1y @ 'Eay @ %Esy)

10n +1 (4n+ 1)(Ay & 'Ery, @ %E1y) @ 4n ('Eay @ ?Fay,)

10n + 2 (4Tl + 1)( 1E1g 2E1g 1E2g © Egg)

10n+3 (4n + 1)(A, & B, @ %E1,) © (4n + 2)(1Eq, ® %Eay)

10n + 4 (An+1) Ay @ (dn+2)(\E1, ® %E1y & 'Eay @ Eay)

10n+5 (4n +3) Ay, @ (4n + 2)(1E1y @ °E1y © Eoy @ %Eay,)

10n + 6 (4n + 3)( 1E1g 2Elg) @ (4n + 2)(1E29 &5 2E29>
10n+7 (471 + 3)( 1E1u (5 2E1u (S5) 1E2u D 2E2u)

10n + 8 (471 + 3) lElg QElg) (4n + 4)(1Egg D QEgg)

10n + 9 (4TL + 3) A D (4n + 4)(1E1u 2E1u 1E2u &) 2E2u)

n+ 5 (2n 4+ 1)("Erj2.g © *Er/2,9) ® 20 ("Es /o,y © °Egja 4 ® Asja )
omn + % (2n—|— 1)( E1/2g @ El/Qg ©® Eg/gg &) E3/2 g) D 2nA5/29
5Tl+ % (2n+ 1)(1E1/Qg€9 E1/2g o) E3/27g@ E3/2 g) (2n+2) A5/27g
5n+ % (2n+ 1)("E1 /2,9 © E1)2,9) © (204 2)("Es /2,9 © *E3)2,4 ® Asj2,4)
5”+% (20 +2)("Er /2,4 © *Erja,g ® 'Eyyz,g ® *E3y2.4 © Asjag)
n=0,1,2,...

T 16.11 Clebsch—Gordan coefficients
§16-11 &, p. 83
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2 IGl=12 |C|=12 |C]=24 T 17 p. 143 Sio

(1) Product forms: none.

(2) Group chains: Dgg D S12 D S4, Dgg D S12 O Ce.

(3) Operations of G: E, Slsz_, cF, 8, O, 85, O, 8505 8, C;, 515;'

(4) Operations of G: E, S35, C&, Sy, CF, S, Ca, S, C5, Sf, Cs, SiF,
E, 87, C} 57, Cf, 85, G, B, G5, 5, G753

(5) Classes and representations: |r| =12, [i|=0, |I] =12, 7] = 12.
F17 See Chapter 15, p. 65
N
o0l | 607

Examples:

T 17.1 Parameters T 17.2 Multiplication table T 17.3 Factor table
Use T 45.1. § 16-1, p. 68 Use T 45.2. § 16-2, p. 69 Use T 45.3. § 16-3, p. 70
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T17 Si2

T 17.4 Character table §16-4, p. 71
S12 E Sy Cf S5 cf Sp G S ¢y Sfocy o S T
A 1 1 1 1 1 1 1 1 1 1 1 1 a
B 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 a
BN 1 —in* —n i n* —in -1 in* n —i —n* in b
’F, 1 in -t =i n in® -1 —in n* i -n  —in* b
'Ey r = 7 -1 9 - 1 -y g7 -1 - b
°E L —n -1 o - 1 -5  q -1 noo-n b
1B, 1 i -1 —i 1 i -1 i 1 i -1 —i b
2Fy 1 —i -1 i 1 -1 -1 i 1 —i -1 i b
N L 1w 1w o1 oo b
°Ey IR o1 /A U B A | ] n* b
1B 1 it —-n =i n* in -1 —in* n i —n* —in b
2B 1 —ip —n* i n —ipn* -1 in nt -1 —n in* b
1E1/2 1 0 —in e -t io* i —i6 —nq € in* o* b
2E1/2 1 o* in* e —n =i —i io* —n* € —in 1) b
"By /s 1 € —i —e -1 —e* i —e -1 —¢ i € b
’Es/s 1 € i —er -1 — i - -1 —¢ —i €* b
'Fs o 1 i0* —ip* —e —n 5 i 0 —m* —e*  in  —ié b
2E5/2 1 —id in  —e* —n* o —i 6 -n —e —in* io* b
1E7/2 1 —id* —in* e —-n -6 i —0* —n* €* in i0 b
*E7/9 1 s in e - =5 - =5 -—n € —ip* —id* b
'Eq /o 1 —e i e -1 €* i e -1 €* i —c b
2E9/2 1 —e i e —1 e —i e —1 € —i —€* b
By 1 =8 —ip  —e —pr 6" i i6 -y  —e it 6 b
Eypy 1 =8 it —e - 16 —i —i6* -t —e  —ip  —6 b

d = exp(27i/24), e = exp(27i/8), n = exp(27i/3)

T 17.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
Sio 0 1 2 3
A b Rz x2 + y27 DZ2
B B2 (22 +y?)2,023
lEl ®2E1 D(xay)7(R.’E7Ry) {IE(I2+y2),y(1'2+y2)},m($227y22)
1By @ 2, ?(zy, 2 — y?)
'E3 & %3 O{x(a® - 3y?),y(32® — y?)}
B, ®2%E, ayz, 2(2? — y?)}
'Es & %5 (2, yz)
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Si2 T17

T 17.6 Symmetrized bases § 166, p. 74
Si2 |im) L I Si12 ljm) L 1
A 00y |76y 2 12 B, 13D L 1 112
B 10) 66) 2 +12 2E1 )2 12 3) AL 1 +12
By [11) 65) 2 +12 "By /o 153) 53)° 1 £12
By 1) 65) 2 £12 *Es /o 153) 58)° 1 £12
‘B |22) 54) 2 £12 'Es /o 153) 55" 1 £12
By |22) 54) 2 £12 2Es5 /o 15 5) EX 1 £12
B3 [33) |43) 2 £12 'E7 /o 12 2) 122)° 1 12
B3 [33) 143) 2 £12 2Er )5 12 1) 125)° 1 £12
B, 132) |44) 2 £12 By /o 12 9) |3 2)° 1 +12
By [32) |44) 2 £12 2By s 12 9) EE)X 1 +12
1Es 121) [55) 2 £12 Eip 138 111y 1 412
Bs  |2T)  [55) 2 *12 Eup 155 133) 1 12
T 17.7 Matrix representations
Use T 17.4 . § 16-7, p. 77
T 17.8 Direct products of representations §16-8, p. 81
Si2 A B By By 'Ey By 'Ey B3 'E, *Ey 'Es ?Es 'Ey /2 ’Ey /2
A A B By B, 'BEy B, B3 B3 'Ey %Ey 'Bs Es 'Ein By
B A 'Bs *BEs 'Ey By, *Bs 'Es 'Ey *E, 'Ey ?Ey 'Einy B
'Fy B, A 2By 'Es 'Ey 'E, *Es; *E5 *Ey B ?Eys 'Egp
By By *Es 'Ey *E, *Ey 'Es 'Es B 'Ey ®Egp  'Eip
1z, 6, A By 'Bs B B *E; 'BEy 'Espn Esp
’Ey By %Bs By B 'Ey B3 'E; 'Ezn ZEsp
o B A By °E, '‘Ey By %E;p By
Es B By ?B; 'Ey *E; ®Es;n 'Eqp
'E, By A PEy PEs 'Ern %Eyp
By 'Ey 'BEs 'Ey 'Egp  *Erj
1 2 2 1
Es Ey A By Esp
’Fs By 2Es;n By
Ey 2Fs A
2E1/2 1E‘S

—=>
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T 17 Sio

T 17.8 Direct products of representations (cont.)
Si2 B30 ?Es;n 'Es;y %Es;s 'Erpe 2Ern 'Egs Egn 'Eiigy %Erige
A ‘B3 2Es;s 'Espp PEsps 'Erpp *Erjp 'Egpn o PEgjs 'Ere By
B 'Ego  ?Eqjs  'E7js *E75  'Es;s 2Es;e By By 'Evp PEip
Ey *E7)s 'Ervis PEgys 'Esjy Esjp 'Erpp *Espy By PEys 'Esps
’E\ Evi2 'Erjs *Es;s 'Egys *Erjs 'Esjy PEvys 'Esjy %Espy By
'Fy By %Ers 'Egs PEijs ‘Bz PErvigs By Espy 'Erpn g
) 'Brp PEijs 'Bip PEgyy 'Enge Espp sy *Eivge By %Erp
'Es B3y 9o 2Eiviys 'Eijs 2Evp 'Eigs *Egs 'Espn %Es;s 'Erjs
’Es ’Egjs  'Es;p 2Eijs 'Evijs *Evigs 'Evp By 'Egpy %E7s 'Esps
'Ey i1y ?Esjp ‘Bz PEivyp 'Egs PEiyp By Erp By Esp
’E, 'Bs/o 2Eip 'Bige 2Esps 'Evp PEgys 'Erpp B ‘Bz B
B *Esjp 'Evjs %Es;s 'Erpp %Egs ‘B 2Erjs 'Eige 2Erige 'Egpo
’Es *Evs 'Esjs %Er;s ‘B ?Es;s ‘B9 PErvige 'Erp PEgjy 'Ennge
1E1/2 By 1B, 1B, 2F, 2F, 2B, 1B, B, ’Ey B
°E, /2 °F, 2B B, °E, B, 1R, 2B, 2, B 1,
o 26, A 2, B, 25 B ‘B, B B, 2
F, /2 1R, ’E, 1R 2E, 1y B °Fs 1B, 2,
By /2 F A 1B, B °E, ’E, 2Fs B,
2E5/2 ’Fs B °Es 1B, F ’E, N
s 5, A 2E. 2B, B, K
*E7/2 ’Er 'E, Es ’Fy ’Fs
Eys B, A B, 2E,
iEg/z 'Es ;Ez ’Es
Er1/2 Es A
Er12 B
T 17.9 Subduction (descent of symmetry) §16-9, p. 82
Si2 Sis Cs C3 Cy Si2 S4 Ce Cs Co
A A A A A 1E1/2 2E1/2 1E1/2 1E1/2 1E1/2
B B A A A 2E1 /2 'Eijo %Ervjp *Evjp %Eigs
Ey ’6 B, 'E B B3/ Esso 'Espn Aszjpp 'Eijs
’Eq ¥ B, 6 B Es o B35 *Esjp Asjp *Eipo
By B 'E, 'E A 'Es o B3 'Esjp *Eijs 'Eijs
F, B ?E, ’E A Es /s B3/ *Esj2 'Evp *Eygo
'Es ' B A B Bz Erj2 'Esjp *Ern 'Eips
*Fs ’6 B A B 2E7 /2 "By %Es;s 'Evp %Eigo
', A B, 'E A 'Eq /2 Erj2 ‘Bz Az B
B, A ?Ey, E A ’Eq)2 "By *Esjp Asjy By
Fs 'F B, 'E B Ev1/2 Esj2 By 'Eijn 'Eijs
Es °’E *Ey E B Ev1/2 B3/ *Erj2 *Erj2 *Bigo
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Si2 T17

T 17.10 Subduction from O(3) § 16-10, p. 82
J Si2
12n (2TL + 1) A®2n (B D 1E1 (&5) 2E1 D 1E2 D 2E2 () 1E3 (5] 2E3 D 1E4 D 2E4 D 1E5 D 2E5)

12n+1 2n (AP B, ®°FEy B3 0 B30 'E, ©°%E, @ 'Es ©%E5) @ (2n + 1)(B @ B, © 2B,
12n+2 Cn+1)(ADE, ®2%E, @ 'Es 9%E5) 0 2n (B By ©°%E) @ 'E3 ©%E3 @ 'E, ® 2B,
12n+ 3 2n(A® By ®%FEy ®Es ®%E5) ® 2n+ 1)(BO'E1 ©2%E) @ B3 © %FE3 © 'E4 © %E,
12n +4 (2n+1)(AD'Ey ®2%Fy ® 'E3 ® %E3 @ 'E4 © %Ey © 'E5 @ %E5) @ 2n (B @ 'Ey & %Fy
12n+5 2nA® (2n+1)(BO'EL ©%E, @ By ® 2By © 'E3 © °F3 © 'E, @ 2B, @ 'E5 @ %E5)

)
)
)
)

12n +6 Cn+1)(A®'E1 0% 0B d?E, 0 ' B30 B3 9B, 0%E, @ 'Es ®%E5) @ (2n+2) B
12n 4+ 7 (2n+2) (A®'Es ®2%E5) @ (2n+ 1)(B® By @ %E1 © By © 2By @ 'E3 @ %E3 @ By @ 2Ey)
12n +8 (2n+1)(A® By &2E, @ 'E3 ®%E3 & 'E5 @ %E5) @ (2n + 2)(B & 'Ey @ °E) @ 'Ey & °Ey)
12n+9 (2n+2) (A 'E,8%E, & 'E; & %E; & 'E; ®%Es) & (2n+ 1)(B @ 'E1 @ °E1 @ 'Ey @ °Ey)
120410  (2n4+1)(A®'Es ®%E5) @ (2n+2)(B® 'E1 & %E, & 'Ey & %Ey @ 'E3 @ %5 @ 'E, @ %E))
2n+11  (2n+2)(A®'E1 8%, @ 'E2 3B, ' B3 ®%E; @ 'E, ©°E, @ 'E5 ®%E5) @ (2n+ 1) B
12n+ 3 (2n + 1)(1E1/2 @B, 2) @

(1E3/2 S3) 2E3/2 D 1Es/2 D 2E5/2 ®'Er 0 @ 2E7/2 S5 1139/2 D 2E9/2 S 1E11/2 D 2E11/2)
12n + 3 (2n+ 1) (*E1j2 ®%E1)2 ® 'Es )0 & 2E30) &

2n ("Es )5 @ *Es )5 @ 'Er)s @ 2Er)9 ® 'Egjo @ 2Egjo ® 'E11/2 @ *E11)2)
12n + 2 (2n + 1)(1E1/2 ® 212 @ 'E3jo ®%F3)2 @ 'E5j ® °E5 ) @

2n ("Er )3 @ *Er s @ 'Egjs © *Egjs ® 'E1/2 ® *E11)2)
12n 4 1 (2n + 1)(1E1/2 ®2E1 )2 ® B30 ®%E3jo ® 'Esjo ® %Es 2 @ 'Eqjo @ %Eq)0) @

2n ("Egy @ *Egy @ 'E11/2 ® *E11/2)
12n + % 2n+1)(* E1/ @ 2E1/2 @ 1Ea/z 2 2Eg/z D 1E5/2 @ 2E5/2 @ 1E7/2 2 2E7/2 D 1Eg/z @ 2E9/2) 2

(1E11/2 D 2Eu/z)
12n+ 4 (2n+1)("Eyj2 ®°E1)2 © 'Esjs ® °E3)y ® 'Esjy ® *Es 2 ® 'Erjy © *Erja ® 'Eg s © *Eg s ©

1E11/2 S 2E11/2)

12n + 12 (2n+1)(*E1/2 ® %E1 /2 ® B33 ® *E3/2 ® 'Es o @ *Es 2 ® 'Erja @ *Er /0 ® 'Eg o © *Eg2) @

(2n + 2)("Ey1/2 @ *Ery)2)
12n+ 12 2n+1)('E1)2 @ %E1)s © Ezjs ® *Ezjo ® 'Esjo © *Es o ® 'Erjo ® 2Er/2) @
(2n+2)("Eg/2 ® %Eg /2 & 'Er1 )2 @ *Er1)2)
12n + 4 (2n+1)("Eyj2 ®°E1j2 ® 'Esjs ® °E3jy ® 'Esja ® °Esj2) ©
(2n + 2)(1E7/2 @ 2E7/2 2] 1E9/2 2] 2Eg/z D 1En/z 2] 2E11/2)
12n+3  (2n+1)('E1)2 &°E12 @ 'Esps & °Es0) @
(2n +2)("Es )2 ® *Esja ® 'Brjo © *Erja © 'Eg 2 © *Eoja @ 'Evija @ *E1y/2)
12n+28 (2n+1)("E1/2 ©%E1)2) ® (2n + 2)(\E3 /0 @ %E3 /0 @ 'Es 0 @ %Esj2 @ 'Eyp @ 27y @
"By @ 2Eg/2 D 1E11/2 D 2Eu/Q)
12n + 2 (2n 4 2)("Erj2 ®°E1)2 ® 'Esj2 ® °E3)2 ® 'Esjy ® °Es 2 ® 'Erjy © *Erjo ® 'Egjs © *Eg s @
'Er1/2 ® °Er1)2)

n=0,1,2,...

T 17.11 Clebsch—Gordan coefficients
§16-11 &, p. 83
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7 Gl=14 |C]=14 |C]=28 T 18 p. 143 S

(1) Product forms: C7 ® C;.

(2) Group chains: D74 D S14 D C;;, D74 D S14 D Cr.

(3} Opsrations of Gt B, O, OF, 0%, €3, CF, G5, 4,85, 8%, 5., 8L, &2F, 88,
(4) Qperatives of G B, CF, O, O2F, €3, €F, Cr, 1, 85, 8%, Su, &%, &F, &8,

= S+ A2+ A3+ A3— A2— -~ Ob— Q3— O—- O+ O3+ o5+
E, C7, C77, C77, C77, C77, C7, %, Six, Si4, Stas Star S14, Sia-

(5) Classes and representations: |r| =14, [i|=0, |I|= 14, 17| = 14.
F 18 See Chapter 15, p. 65
_O®—
I
: —e0- TU
X
Lpl/ \1:3

Examples:
T 18.1 Parameters T 18.2 Multiplication table T 18.3 Factor table
Use T 46.1. § 16-1, p. 68 Use T 46.2. § 16-2, p. 69 Use T 46.3. § 16-3, p. 70
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S14 T 18

T 18.4 Character table §16-4,p. 71
S14 E Ci c3t Cc¥ o ocit o3 Cy i Sy, Sty Smo Sy sifosif T
A, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a
By 1 o e nt n € 5 1 & & 9t o € 5 b
E1, 1 1) € n n* €* 0* 1 6 € n n* €* o* b
1Foyg 1 & n 5 R € 1 € n 5 ot € b
2By, 1 e n* 5* 5 n e 1 € A ) n €* b
B3, 1 ) €* € o* n 1 n* 1) €* € 0* n b
B3, 1 7 o* € €* ) n* 1 n o* € €* ) n* b
A, 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 a
B 1 o e 0t n € 5 -1 =0 —€e —-n* -n —e =6 b
B 1 6 € n n* e & -1 -5 —e -n -t — =5 b
Bou 1 € n 1) o* n* e -1 —e¢ —-n =0 =0 -0 —e b
2By, 1 € n* o* ) n e -1 —e —-n* =6 =5 -n —€ b
B3, 1 n* ) €* € o* n -1 —-n* =5 - —e =0 - b
2F3,, 1 n o € €* ) n -1 —-n =6 —e —€ -5 -0 b
"B/, 1 —n* T L — ) 1 —n* 0 — —¢ 5 —n b
E1 /2,9 1 —n 5 —e  —€ 5y —-n* 1 —nq 5 —e —€ 5 -t b
E3/9.4 1 —e n* =0 =6 n —€ 1 —e n* =0 =6 n  —€ b
2E3/2,g 1 —€ n -0 =6 Nt —e 1 —e n -6 =0 n*  —e b
1E5/2 g 1 - e —n* —n e =0 1 =4 e —n* —n e =0 b
*Es /.9 1 =6 e -n —n* e =5 1 =5 e -n -t e —o* b

/2.9 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 a
Ei/2.0 1 —n* 0 —€ —e o —n -1 n* =0 €* e =0 n b
E1 /2,4 1 —n 0 —e  —€* o —-n* -1 n =0 € e = n* b
1E3/2,u 1 —e n* =0 =0 n —e =1 e —n* o* 6 —n €* b
E3/2.4 1 —€* n =5 = nt —e -1 e —n 6 o —n* € b
Es/2.4 1 = e —n* —n e —6 -1 0 —€* n* n  —€ ) b
Es)2,u 1 =9 e —-n - e =0 -1 0 —€ n n* —e* o* b
A7/27u 1 -1 1 —1 —1 1 -1 -1 1 -1 1 1 -1 1 a
§ = exp(27i/7), € = exp(4wi/7), n = exp(67i/7)
T 18.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
S14 0 1 2 3
Ag H1 R, x? 492,822
By & 2Elg (Ra, Ry) Pz, yz)
1E2g @ 2E29 D(xyv {E2 - y2)
1-ESg 2] 2E3g
Au O, (132 +y2)z,Dz3
lElu EBQElu D(xvy) {x(xQ +y2)7y($2 —|—y2)},D(x22,y22)
1E2u S 2E2u D{xyz, Z(xz - yZ)}
B3, @ %3, Ha(a? = 3y°),y(32% — )}
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T 18 S14

T 18.6 Symmetrized bases §16-6, p. 74

S14 gm) I Si4 ljm) L I

A, 00) 2«7 B, A0 1 47

F, 121) 2 47 F1/9.9 111 +7

Ey, 121) 2 &7 "By 13 3) 1 47

1E2g 22) 2 +7 2E3/2,g |%g> 1 +7

2By, [22) 2 47 Espng 133) 1 %7

"By 43) 2 47 Esjag 133 L7

B3, 143) 2 &7 Az/ag 121 1 &7

A, 10y 2«7 Brpu  BDT 1 47

B [11) 2 47 Frpa 133" 1 #T

%, NPT 2 47 Bapu 133" 1 47

By [32) 2 47 Byp 133" 1 &7

IR 2 47 Espw 133 1 #7

Ea, 33) 2 47 Esjpa 133 1 &7

’Es,  [33) 2 47 A7/2,u 350 1 T

T 18.7 Matrix representations

Use T 184 4. §16-7, p. 77

T 18.8 Direct products of representations §16-8, p. 81

Sl4 Ag 1Elg 2Elg 1E2g 2E29 1E39 2E39 Au lElu 2E1u 1E2u 2E2u 1E3u 2E3u

Ag Ag 1Elg 2Elg 1E2g 2E29 1E3g 2E3g Au lElu 2E‘lu 1E2u 2E2u 1E3u 2E3u

lElg 1E2g Ag 1E39 2Elg 2E3g 2E2g lElu 1E2u Au 1E3u 2Elu 2E3u 2E2u

QElg 2E2g 1lclg 2E‘3g 1E‘2g 1E39 2Lclu Au 2E2u 1Eg‘lu 2E3u 1E2u 1E3u

1E2g E3g Ag QEQg 2Ejlg 1E2u 1E3u 1Elu 2E3u Au E2u 2Ef‘lu

2E2g 1E3g 1Elg 1E2g 2E2u 2E1u 2E3u Au 1E3u 1E1u 1E2u

IESg 2-Elg Ag 1E3u 2E3u 1E2u 2E2u 1-Elu Elu Au

ESg 1E‘lg 2E3u 2E2u 1E3u 2E1u 1E2u Au 1E1u

A, A, By, *Eyy 'Esyy 2By 'Es, 2Es

1Elu 1E2q Aq 1E3g 2Elq 2E3q 2E2q

2B, Eay 'Erg “Esg 'Eoy Bz

1Ea, Eyy Ay By By

E2u 1E39 1Elg 1E29

1B, 2Elg Ag

ESu 1E19
—>
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S14 T 18

T 18.8 Direct products of representations (cont.)

S14 'Erjag Erjpg 'Esjpg Esjpg 'Espg *Espg Arpg
149 1El/2,g 2El/lg 1E3/2,g 2EB/ZQ 1E5/2,g 2ES/ZQ Azj2,g
Ery E1/29 E3jag “Esjag Eijpg “Espg A2 Esjag
Fy, Esja9 Erag Fijog Esppg Arj2g Esppg “FEsag
1By Esjag “Esing Arj2g “Erag Fiog Espg “Ezong
2E29 E5/2,g E3/2,g E1/2,g A7/2,g E5/2,g E1/2,g E3/2,g
1E3g E5/2,g A7/2,g E5/2,g E3/2,g E1/2,g E3/2,g E1/2,g
ESg A7/2,g 1E‘5/2,g 2-E13/2,g 2E‘5/2,g 1-E3/2,g 1E‘1/2,g 2-El/2,g
Ay 1E‘1/2,u 2lz‘l/Q,u 1E3/2,u 2IE‘S/Z,u 1E‘S/Z,u 2IZ‘E)/Z,u A7/2,u
'F1y Eijo 'Espou “Esppu Evpu *Espa Arjsu Espo
*F1y Esjo 'Erjon *Erou Espa Arjpu Esjpu *Espa
s, "Esou Esppu Ar2u Eipw Eipu ‘Espa Espu
2E2u 1-ES/Q,u 2E‘S/Q,u 1-El/Q,u A?/Q,u 2-E15/2,u 2E1/2,u 1-E|?>/2,u
1E3u 2-E‘E’)/Q,u A7/2,u 1E5/2,u 1E3/2,u 2E1/2,u 2E3/2,u 1-El/Q,u
2E3u A7/2,u 1ECE)/Zu 2E3/2,u 2£§‘5/2,u 1E3/2,u 1EZ‘l/Z,u 2E‘l/Q,u
1El/2,g QElg Ag 1Elg 2E2g 2E3.q 1E29 1E3.q
2El/2,g lElg 1E2g 2Elg 2E2g 1E3g ZEBg
1E3/2,9 1E39 Ag 2Elg 2E3g 2E2g
E3/2,g 2E39 1E3g 1E19 1E2g
1E5/2,g 1E2g Ag 1E19
5/2,9 2E2g 2Elg
7/2,9 Ag
—>
T 18.8 Direct products of representations (cont.)
S14 Erow Bipa Espu *Esjpu Espu Espa Az
A 'Erou “Evpa Espu *Espu Espu Espa Arpa
o Eio0  E3jpu FEspu Eropa FEspu Arpua Espu
Elg E3/2,u El/Q,u E1/2,u E5/2,u A7/2,u E3/2,u E5/2,u
1E29 E3/2,u 2E5/2,u A?/Q,u El/?,u E1/2,u E5/2,u E3/2,u
2Eoyq Espu *Esjpn Bijpu Arjou *Esjaw “Eijpu 'Esp
'Es, Esjon Ar2u Espu Ezpu *Eipu Esjpu ‘Eijs
Es, Arou 'Esppu *Esppu “Esppu Esjpu 'Eijow *Eijs
Au 1E‘1/2,g 2E11/2,g 1E‘3/2,g 2E3/2,g 1E‘5/2,g 2EI5/2,g A7/2,g
1E1u E1/2,g 1E3/2,g E5/2,g 1E1/2,g E3/2,g {’47/2,g E5/2,g
2E1u E3/2,g El/?,g E1/2,g E5/2,g A’?/Q,g E3/2,g E5/2,g
1E2u 1EZ‘B/Zg 2E‘S/Z,g A7/2,g 2LEI/Q,Q 1£§‘1/2,g 1L?E)/Z,g 2ECB/Z,g
2Eay, ‘Esjag “Espng 'Eipg Arjog *Esjpg *Eijag 'Espyg
'Fs,, Esjag  Arj2g 'Esppg 'Esjpg Eijpg *Esjag 'Eijsyg
2E3’u. A7/2,g 1E5/2,g 2E‘f?»/Z,g 2E5/2,g 1E‘B/Q,g 1E1/2,g 2E‘l/Q,g
1E’l/Q,g 2E1u u ! lu 2E2u 2 3u ! 2u ! 3u
2E’1/2,g Au Eru 1E2u 2E1u Eo., 1E3u 2E3u
1E’3/2 g 1E‘lu 1E2u 1E3u Ay 2E11u Es., 2E2u
2EIS/2,g 2E2u 2lz‘lu Au 2E3u 1£?3u 1l;lu 1E2u
'Es /2.4 Esu By, 21, 'Fsu 1Eo, A, Fr.
2E5/2,g 1E2u 1E3u 2E3u 1E1u Au E2u 2E1u
A7/2,g 1E3u 2E3u 2E2u 1E2u lElu Eru Au
1E’1/2,u 2Elg Ag 1Elg 2E2g 2E39 1E2g 1E39
2-El/2 u 1-Elg 1E29 2-Elg 2E29 1E39 2E3g
1Ed/2,u 1E?)g Aq 2Elg 2E3q 2E2g
2By 1y 2By, By, By, Fa,
'Es 2. 'Esg Ag By
2E15/2,u 2-E2g 2E‘lg
A7/2,u Ag
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T 18 S1a

T 18.9 Subduction (descent of symmetry)

§ 16-9, p. 82

Si4 C;, C; Si4 C; Cr

Ag Ay A 1El/2,g Aryag 1El/2

1By A, By F1/9.9 Aiy2.q E1 )9

2Elg Ag 2E’l 1E’3/2,g A1/2,g 1E3/2

1E29 Ag 1E2 2-E3/2,g A1/2,g 2EV&’./Q

Eag Ay By Es/2.9 Aijag 'Espa

B3, Ay 'Es *Es /2,9 Aoy %Espo

*Esq Ay, Es A7/, Aijag Arpo

Au Au A 1E’1/2,u A1/2,u 1E1/2

lElu Au 1-El 2E’1/2,u Al/Z,u 2E1/2

F1y Ay Ey "By /2.4 Aijou By

By Ay By Eypu  Aijzu Bz

*Eay Ay B 'Es 2, Aijou 'Espo

'Fsu A, 'Fs ?Es /9.4 Avj2 ?Espo

2E’Su Ay 2E3 A7/2,u Al/Z,u A7/2

T 18.10 & Subduction from O(3) § 16-10, p. 82
J Sia

14n (477, + 1) A D 4n (1Elg QElg D 1E2g D 2E2g D 1E3g D 2E3g)

14n +1 (4n +1)(A, @ E1, @ %E1) @ 4n (1B, ® *Eoy, @ B3, @ %E3,)

14n + 2 (4n + 1)( lElg QElg lEgg 2E29) @ 4n (1E39 D 2E39)

14n +3 (4n +1)(A, ® B, @ %F1y © By, © 2By, @ B3, @ %F3y,)

14Tl =+ 4 (47’l + 1)( 1E1g () 2E1g ) 1E2g ) QEQQ) ) (47’L =+ 2)(1E39 (&%) QEgg)

14n+5 (4n +1)(A, ® E1, @ %E1.) © (4n + 2)(1Esy, @ %Eay @ E3, @ %F3,,)

14n + 6 (An+1) Ay @ (4n +2)(\Ery © %F1y @ Bay @ *Bay @ B3, @ °E3y)

4n+7 (4n +3) Ay @ (4n + 2)(*E1y @ %1y © By @ %Eoy © B3y @ %E3y)

14n + 8 (47’l + 3)( 1E1g () 2E1g) D (47?, + 2)(1E2g (&%) QEgg (&) 1E3g D QEgg)

14n+9 (4n + 3)(Ay @ 'E1, @ 2E1y © Eoy @ %Eay) @ (4n + 2)(1E3, @ %F3.,)

].47L + 10 (471 + 3)( 1Elg 2Elg lEQQ 2E29 @ lEgg @ 2Egg)

14n + 11 (4n + 3)(Au & 'E1y @ °Ery @ 'Eay & Eay) & (4n + 4)('Esy @ *E3y)

14n + 12 (4n+ 3)(Ag @ 'E1y ® %E1y) © (4n + 4)(1E2y @ Eay & B3y & Es,)

14n + 13 (47’L + 3) A, ® (47’L + 4)(1E1u b 2E1u 1E2u 2E2u lEgu (o) QEg,u)

™+ 3 20 +1)( B2, ® °Erja,) © 20 (‘Ey/a,g © *Eyja,g ® s o, © *Es 2,9 ® Ar/2,9)
n+ 3 (2n+1)(*E1 /2,y ® °E1/2,g ® 'E3)0,9 ©E3/2.4) ® 20 (*E5/2,4 ® *Es /2, ® A7/2,4)
n+3 (2n+1)("Er /2,y ®2E1 2,0 © 'Es)0,g ® °Esy2.g ® B0, & *Es0.9) & 20 A7)0

n+ % (2n+1)("E1 /2,y ®°F1/2,g ® 'E30,0 © B30, ® 'Es 2,9 ® *E5)2,9) ® (20 +2) A7/9 4
n+ % (2n + 1)(1E1/2 g® E1/2 gD E3/2 gD E3/2 0) ®(2n+2)(! Es/2, ® E5/279 ® A7/2,49)
7n+171 (2n+1)(1E1/2g@ E1/2 g) (2Tl+2)(1E3/29@ Eg/gg@1E5/29@2E5/2g®A7/2,g)
n+ 12*3 (2n + 2)< Eyy2,9® E1/2 gD E5/2 gD E3/2 g® E5/2 gD E5/2 gD A7/2 g)
n=0,1,2,...

T 18.11 Clebsch—Gordan coefficients
§16-11 &, p. 83
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16 IGl=16 |C]=16 |C|=32 T 19 p. 143 Si6

(1) Product forms: none.

(2) Group chains: Dgg D S16 D Cs.

(3) Operations of G: E, 815, ©F, 5. OF, 8, C2*, 55, Oy, 8L, 62, &5, o, 8, 05, 8¢.
(4) Opseations of G- B, 87 CF, B0 CFs 55 OO B Cu By 68—, 812 Cf s 837 Cos 81,

= Q- S+ o5 A+ Q8- A3+ G- A O+ 83— O3+ - o5+ - O+
E, 516 ) Cs> SIG ) C4, 516 ) Cs ) 516’ Co, 516’ Cs ) 516 ) 04 ) 516 ) Cs: 516-

(5) Classes and representations: |r| =16, [i|=0, [I/|= 16, 7] = 16.
F 19 See Chapter 15, p. 65
$
y L/ﬁ
X X
O
o R
Examples:
T 19.1 Parameters T 19.2 Multiplication table T 19.3 Factor table
Use T 47.1. § 16-1, p. 68 Use T 47.2. § 16-2, p. 69 Use T 47.3. § 16-3, p. 70
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T19 Si6

T 19.4 Character table §16-4, p. 71
S B Slg G S5 Cf Slg G Sis G Sig GiF Si Cf Sid Gy Sig T
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a
B 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 a
By 1 —e 0 ie -—i ie* —0 e —1 e —0* —ie i —ie* 0 —e b
’E, 1 —e 0 —ier i —ie —0* €& -1 € -0 ier —i ie 0* —¢* b
1B, 1 0 -1 -6 -1 -—6* i 0 1 0 -1 -6 -1 -—6* i 0 b
B, 1 6 i =0 -1 -0 i * 1 0 i =0 -1 -0 —i 0* b
1B, 1 —ie* —06* e —1 —€ 08 —ie -1 ie* 60* —e i e —0 ie b
2Fy 1 ie -0 e 1 —e 0*  ie* —1 —ie 0 —ef —i e —0* —ie* b
B, 1 —-i -1 i 1 —-i =1 i 1 —-i -1 i 1 -1 -1 i b
B, 1 i -1 - 1 i -1 - 1 i -1 =i 1 i -1 i b
1By 1 ie* —0* —e —i e 0 ie —1 —ie* 0* € i —e* —0 —ie b
°Fs 1 —ie -0 —€ i € 0* —ie* —1 e 0 e -1 —e -0 i b
1B 1 -0 —i 0 -1 0* i -0 1 -0 —i 0 -1 0* i -0 b
°Fs 1 -0 i 0* —1 g —-i -0 1 -0 i g* —1 g —-i -0* b
B, 1 € 0F —ie —i —ie* —0 —e -1 —€ —0* e i ie 0 € b
2Ey, 1 € 0 ie* i ie —0* —€* -1 —e —0 —ie* —i —ie 0* € b
'F1/9 1 9 € n 0 in*  ie*  i6* i —id —ie —in 0* 9t e o b
2E1/2 1 6 €& 9wt 0F —in —ie —i6 —i i6* ie* it 0 N € 1) b
gy 1 m° —de —i6* =0 =0 —¢ ip i —ip* —e —6* —6* 5 i n b
’Es /s 1 n ie* 0 —0* =6 —e —in* —i in —€ -0 —0 —if* —ie n* b
'Es o 1 in* ie —0* —0 —if e i ot e i6* —0* —§ —ie* —in b
2E5/2 1 —in —ie* =6 —0* 16" € -1 n e —id -0 —6* ie in* b
Frp 1 -6 —e in 0 n* —ie* —6* i —6 e n 0 —in* —e i5* b
2E7/2 1 6" —e* —in* 6 n ie -0 —1 —0* —ie* n* 0 in —e —id b
'Fo /o 1 6 —e —inp 0 —p* —ie* 6 i 6 i€ -y O in* —e —id* b
*Eg/2 1 —i6* —e* in* 0 —np e § —i 6 —ie* —p* 0 —in —e id b
1E11/2 1 —in* e o* —0 i0 e —n i —* e —i6* —0* & —ie" ip b
FEi1p 1 in —iet 5 —0° —i6" e -n* —i -7 e 6 -0 0% ie —in* b
Bigp 1 —n* —e 16" =0 & —¢ —ip i i —e  &* —6* -5 i —n b
Ei32 1 —n ie* —i6 —0* 0 —e in* —i —ip —€* 6 -0 i6* —ie —n* b
Ei5/2 1 =0 e -n 6 —ip* i —i6* 1 0 —ie ip O —p* € —0* b
Ei5p 1 =0 €& —n* 0" in —ie 6 —i —id* ie* —in* 0 —n € —0 b

d = exp(27i/32), € = exp(4mi/32), n = exp(67i/32), 0 = exp(8mi/32)

T 19.5 Cartesian tensors and s, p, d, and f functions §16-5, p. 72
816 0 1 2 3
A 01 R, 2% 4 92,522
B DZ ($2+y2>Z,D23
By @28, B(z,y), (R, Ry) {o(2? 4+ %), y(2® + )}, " (x22,y2?)
By @ 2E, O(zy, x? — y?)
'F5 & °F;3 Pla(z® = 3y?), y(32* — y°)}
By 9%,
B @ 2By
1B @ 2Eg ayz, 2(2? — y?)}
B @ 2B, O(zx,yz)
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Si6

T19

T 19.6 Symmetrized bases

§ 16-6, p. 74
S16 ljm) L It
A |00) 198) 2 £16
B 110) 88) 2 +16
B, 111) 187) 2 +16
2B, I17T) 187) 2 +16
1Fy 122) |76) 2 £16
2K, 122) |76) 2 +16
1B, 133) |65) 2 £16
5 133) |65) 2 +16
1B, |44) |54) 2 +16
2B, 147) |54) 2 +16
1B 143) 155) 2 +16
oS |43) 155) 2 £16
g 132) 6 6) 2 +16
2 132) 166) 2 +16
B, 121 177) 2 +16
B, 121) |77) 2 £16
1E1/2 I%; % 175> 1 +16
i 133 I N B S
By 133) 13 5) L =£16
Bsn  133) B 1 £16
B 3D RW 1 6
Espp 133) 357 1 £16
Bz /s 155 55)° L =£16
*Er/2 12 1) 199)° 1 +16
By 13D 3D 1 16
*E9/2 152) 12 1y* 1 +16
B9 145 4 155)° 1 +16
E11/0 |1l 5 g>. 1 +16
1E13/2 |1*23 1*23> ‘% %>. 1 +16
Er3/2 15 %) 123)° 1 +16
Ei5)2 12 ) 33) D
Bup B3P BT 1 0
T 19.7 Matrix representations
Use T19.4 4. §16-7, p. 77
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T 19 Si6
T 19.8 Direct products of representations §16-8, p. 81
Sy A B B, 25, B, %E, Es 265, 'E, 2B, B, 2B, 'E, 2B, B, °E,
A A B B B B, B, By By ‘B, °E, ‘Bs °Bs By *E; B ‘B
B A By B, By %Bg B %E; 2By, By, By Ey By B, ‘By B
1B, B, A 2By B, B, B, 'B; ‘Bs 2B B, °Bs B, E; B
25, 2, B, By B, ‘B, 2By ’Bs By ‘Bg B E; B %
B, By, A B, By E, B, B, By ‘B, B By B
2R, M, 255 B, ‘B, ‘Be B ‘B B B, B, 1B
1 By A B B, B, B B By B 'E,
2R, 2o 2, B, B B, ‘Bs By B, 'Eg
£, B A B B B, B By
B, B By B By ‘B, By B
o By A 2B, B, B, °E,
2E5 2E6 1E5 1E1 1E4 1E2
1B g, A Z2E; 'E
2E6 2E4 2E1 1E3
1E7 1E2 A
2E7 2E2
-

T 19.8 Direct products of representations (cont.)
S16 'Eyjo PEis ‘Bz PEs;s 'Espp PEspy 'Erp PErg
A 'Erjo 2Eis ‘Bz PEs;s 'Espp PEspy 'Erp PErg
{5 ;E15/2 iE15/2 ;E13/2 TE13/2 ;E11/2 25511/2 ;Eg/z 12E9/2
2E1 2E15/2 1E13/2 2E11/2 1E15/2 2E13/2 1E9/2 2E7/2 Fu/z
I E13/2 “Eis2 “Eisj2 Eiip “Egjp Eize “Erie B
;EQ 1E3/2 zEs/z 1E7/2 §E1/2 1E1/2 ;Eg/z ;E11/2 12E3/2
1E2 2E5/2 1E3/2 2E1/2 1E7/2 2E9/2 1E1/2 2E11/2 1E13/2
Es Egs2  "Eviy2 “Eizja Ere “Espp Eis;e Eis;e Bz
*Fs *Evij2 'Eg;s ?Er;2 'Eige *Eris;e 'Espy PEspy 'Eigpo
By 'Ers *Egs 'Eiija *Es;s 'Esjn *Eige 'Eisps PErgs
’E, 'Eojo  2Ers 'Esjp 2Ervijs 'Eizpe Espe 'Eip %Eisgs
'Es Erja 'Es;s %Esp 'Egjy B 'Evp PEis o 'Eiggs
TEE) 12E5/2 B/ iEg/z 21E3/2 12E1/2 12E11/2 21E13/2 21E1/2
Es Ei32 “Ei1y2 "FEgyp “Fisja Eisje “Ere Esje “Eigge
’Es B2 *Eizjs 'Eispe *Eos 'Erjs PEiss 'Eigs 2Es)o
'E; Erj2 'Esjz *Esj;p 'Eryy *Espn 'Erjp *Egpn '
’F7 B3 'Eijs %Eip 'Espy Ers ‘B ?Es;s 'Egpo
B /2 2, A g, ’E, 1R g, 2Fs ’E,
’F1 /s 'E; 'Ey *Er ’Fy Es By Ey
1y 2. A E, B, B, 2B,
°Es)s 'Es E4 'F; 'Fy Es
By s 2, A B, R,
’Es /o P Fg B,
1E7/2 2E1 A
E7/2 By

=
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T 19.8 Direct products of representations (cont.)

S16 'Ego  ?Egss 'Eiij2 *Eiija 'Eize *Erze 'Eise %Eis)s

A 'Egjo *Egs 'Evijs *Ervije 'Eizge *Ergs 'Eispe *Eis)e

B 'Er/o ?E7s 'Es;s ?Es;y 'Es;e 2Es;n 'Evp Eip

Ey ’Egjs  'Es;s *Es;y 'Ern PEspy By PEypn 'Esp

’Ey *Es;p 'Bojs Ers 'Espp 2By 'Espp 2Es;s B

'Ey 'Bs/o 2Eizp 'Eispe Ers 'Eop *Ersgs 'Eize %Euige

) 'Br30 %Esjp 'Erjs PEispp 'Bise Egs 'Eiige Ergge

'Es *Eijs iz *Evige 'Evjp Espp 'Egn *Ers 'Esps

’Fs *Eizj2 'Evjs *Eis 'Eige %Egps 'Espn Espy 'Eqp

By 'Eyjo *Eis;2 'Eizp *Es;s 'Esps *Evigs 'Egp PEqpp

’E, 'Biss %Eis 'Esjp 2Eizp 'Buge Esps 'Erp 2Egps

1B Eis2 ‘B 2Esps 'Eispe *Erggs 'Ers ?Egje 'Erigo

’Es B3 'Evsjs *Eisja 'Esje 2Erjs 'Eizge PErie 'Eopo

'Eg Eivij2 B3y 'Evps *Eos 'Ers ?Eijs 'Espn 2Esp

*Fs B3 *Evi2 'Eg;s ?Eijs 'Eijp 2Ern 'Espy Esp

;E7 Eq7 /2 11E11/2 22E13/2 11E9/2 F11)2 1E15/2 Ei5/0 "Ei3)2

Er FE112 "Erpp “Eg9jp "Eizp “Eisjp Eiip “Fize Eisge

By g, B, 1By s B, 2E, 2E B

2B, 5, B, 2E, 2E, B, 2 B K

o 5. B, B, 2B, E; B B 1B

o 5, 2 ‘B, B, B 1By 2B, °Z2E

By s g, B, . B B, B 2B

’E /2 ’F, ’Fs B 1Ry 2B, By 1B 2F,

By 5. B B, 2, B 1B, 2B, Z2E,

E7/2 B 'E; By ’Ey Es Es 'E, 1By

By s 2, A B, B, EB; B, 2B A,

*Ey /2 By 'Eg ’F7 ) *F3 B, 'Es

B2 *Fs A ’Fr ’E, 'Es Ey

Ev1/2 'Es 'E4 'E; ) Es

Er3/2 ’Es A 'E; By

E13/2 B, zEz *Er

Ei5/2 Er A

E15/2 'F;

T 19.9 Subduction (descent of symmetry)  §16-9, p. 82

S16 Cs Cy Cy S16 Cs C, C,

A A A A ;E1/2 ;E1/2 TE1/2 ;E1/2

B A A A Ey )2 Eij2 Evp “Erpe

;El ;El ;E B B35 ;Es/z iE3/2 ;E1/2

1E1 1E1 E B Es3 /o 1E3/2 2E3/2 1E1/2

B E, B A Es /o Es/o “Ezjn Eypo

E, 6y, B A ’Es5 Esjo 'Espn 2Ei)s

;Es ;Es ;E B 'E7 /o ;E7/2 ?E1/2 ;E1/2

1E3 k3 “E B E7/o 1E7/2 2E1/2 1E1/2

2E4 B A A Eg /o 2E7/2 1E1/2 2E1/2

1E4 1B {4 A Eyg /o 1E7/2 2E1/2 1E1/2

Es Es 'E B Ev1/2 Es;o “E3;n "Eypo

’Es ’Fs ’E B E110 Esjo 'Espn 2Ei)s

'Fs 'F, B A Er3/9 B3/ *Esjp 'Eyjo

iEG 3E2 1B A E13/2 iE3/2 ;E:s/z iE1/2

Er E, 'E B Ei5/2 E1)2 “Evp Eipe

’Er ’Ey E B E15/2 ’E1js 'Evjp %Eigs
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T19 Si6

T 19.10 Subduction from O(3) § 16-10, p. 82
J S16
16n 2n+1)A®2n (B 'F10%E @ 'Ey ®%Ey @ 'E3 ©°FE3 @ 'E, @B, @ 'Es © %E5 @

lEG D QE(‘, ) 1E7 D 2E7)

16n + 1 2n (AGE, ®2%E @ 'E3 &2 B30 'E, ®%Ey ® 'E5 © %E5 © 'Eg © %Es @ 'E; @ 2E7) @
(2n+1)(B @ 'E; @ %Fy)

16n + 2 2n+1)(AD By @By @ 'E; ©%F;) 92n (BO'E1 ©%E, @ ‘B3 0% E3 0 'E, 0B, @
1E5 () 2E5 &) 1E6 D 2E6)

16n +3 2n(A® By ®2FEy ®'Es®%E, @ 'Es ®°%Es @ B, @ %E7) @ 2n+ 1)(Bo By @ 2By @
'E3 @ 2F3 © 'Eg @ ?Fp)

16n + 4 2n+1)(AD'E 9% E, @B, 0°%E, @ 'Es @ %Es © 'B; ©°%E;) @ 2n (B By ©°%E1 @
1E3 (&) 2E3 &) 1E6 D 2E6)

16n +5 2n(ADE, @B, @B, 0E:) o (2n+ 1) (B 'E1 0%, 0 B30 %E3 0 ' Ey 2By @
'Es @ 2F5 © 'Eg @ ?Fp)

16n + 6 (2n+ 1) (A 'Ey ®%E; @ B3 ©%FE3 @ 'Ey & %E, @ 'E5 @ %E5 & 'Eg @ ’Eg @ 'Er © °Er7) @
2n (B @ 'E, ©%E))

16n + 7 2mMAD(2n+1)(BOE,®%EI @' E 0B O B3 0% B30 ' By ©2E, O 'Es ©%E5 ©
'Es & %Eg & 'E7 @