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While the spin-diffusion model is considered one of the most complete and accurate
tools for the description of spin transport and spin torque, its solution in the context of
dynamical micromagnetic simulations is numerically expensive. We propose a pro-
cedure to retrieve the free parameters of a simple macro-spin like spin-torque model
through the spin-diffusion model. In case of spin-transfer torque the simplified model
complies with the model of Slonczewski. A similar model can be established for the
description of spin-orbit torque. In both cases the spin-diffusion model enables the
retrieval of free model parameters from the geometry and the material parameters
of the system. Since these parameters usually have to be determined phenomeno-
logically through experiments, the proposed method combines the strength of the
diffusion model to resolve material parameters and geometry with the high perfor-
mance of simple torque models. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006561

INTRODUCTION

The effect of spin torque has recently gained a lot of interest in the magnetics community due to
its possible application in storage and sensor technologies. Devices that exploit spin torque include
spin-torque oscillators1,2 as well as spin torque magnetic random access memory.3,4 Sources of
spin torque are spin polarized conducting electrons that interact with the background magnetization.
Two mechanisms that lead to spin torque are depicted in Fig. 1. If the conducting electrons are
polarized due to a reference layer that acts as a spin filter, the resulting torque is referred to as
spin-transfer torque (STT), see Fig. 1(a). If the conducting electrons are polarized due to spin-orbit
induced spin splitting, the resulting torque is referred to as spin-orbit torque (SOT), see Fig. 1(b).
Numerical simulations are essential to the development of both STT and SOT devices, either to explain
experimental measurements or to guide the design of novel devices. A well established model for
the description of magnetization processes on the required length scales is the micromagnetic theory.
While classical micromagnetics does not cover spin transport effects, various methods have been
proposed to extend this model to include spin torque. A popular method for the description of STT
in magnetic multilayers is the model of Slonczewski.5 This model is both efficient and sufficiently
accurate for a certain class of problems. However, it introduces free variables that depend on various
system parameters such as geometry and materials. These parameters are usually determined in a
phenomenological fashion which prevents the systematic investigation of the influence of geometry
and material parameters. A more general model that describes both STT and SOT and that depends
on material parameters only is the spin-diffusion model introduced in Ref. 6. While this model
outperforms the simple Slonczewski model in many regards, it is computationally expensive since it
requires the assembly and solution of a large linear system per time step. In this work we propose a
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FIG. 1. Sources of spin torque. The large grey arrow marks the moving direction of conducting electrons. The colored areas
represent magnetic layers, the grey areas represent metallic layers. (a) Spin-transfer torque. Large blue arrow marks the
magnetization direction. (b) Spin-orbit torque.

procedure that uses the spin-diffusion model to obtain the free parameters of a generic torque model,
similar to the model of Slonczewski, that works for both STT and SOT.

SPIN-DIFFUSION MODEL

The normalized magnetization dynamics m(t) in micromagnetics is governed by the Landau-
Lifshitz-Gilbert equation (LLG)

∂m
∂t
=−γm × heff + αm ×

∂m
∂t

+ T (1)

with γ being the gryomagnetic ratio, heff being the effective field, and α being the damping constant.
In case of the spin-diffusion model, the LLG is supplemented by an additional torque term T given by

T =−
γJ
~γMs

m × s (2)

where J is the exchange strength between conducting electrons and magnetization, Ms is the saturation
magnetization, and s is the spin accumulation. The spin accumulation describes the spin polarization
of the conducting electrons as compared to their polarization in the absence of electric current. Within
the spin-diffusion model s is solved by the system

∇ · je = 0 (3)

∇ · js =−
s
τsf
− J

s ×m
~

(4)

where τsf is the spin-flip relaxation time, je is the vector-valued charge current and js is the matrix-
valued spin current. In the standard diffusion model introduced in Ref. 6 these currents are defined as

je = 2C0E − 2D0
β′e
µB

(∇s)T m (5)

js = 2C0
βµB

e
m ⊗ E − 2D0∇s (6)

where C0 is connected to the electric conductivity, D0 is the diffusion constant, and β and β′ are
dimensionless polarization parameters. The numerical solution of the system (3)–(6) is described in
detail in Ref. 7. While this model accounts for the spin transport between layers due to diffusive
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FIG. 2. Spin-accumulation in a magnetic multilayer with pinned layer (blue) homogeneously magnetized in y-direction and
free layer (red) homogeneously magnetized in x-direction.

processes, it does not account for the spin accumulation generated by spin-orbit interaction. These
effects can be included in the spin-diffusion model by modification of the currents according to8

j′e,i = je,i − ε ijkθ
e
µB

js,jk (7)

j′s,ij = js,ij + ε ijkθ
µB

e
je,k (8)

where θ is the spin-Hall angle. Here je and js are inserted from (5) and (6) and j′e and j′s are inserted
into (3) and (4).

Figure 2 depicts the spin accumulation s in a typical STT device with a thick pinned layer that
is homogeneously magnetized in y-direction and a thinner free layer homogeneously magnetized in
x-direction. It should be noted that the spin accumulation is highly non uniform within the magnetic
layers. Not only the strength of s changes rapidly within each layer, but moreover it performs a
rotation in the magnetic layers. This rotation is a consequence of the bidirectional coupling of the
magnetization m with the spin accumulation s that leads to a torque exerted on the spin accumulation.
While the spin-diffusion model is a powerful tool that accurately accounts for a number of spin
transport effects, it adds a significant overhead to numerical calculations since the system matrices
representing (3)–(8) have to be assembled and solved for every time step. In order to solve large
systems in reasonable time, it is highly desirable to reduce the complexity of the spin-torque model.

SIMPLIFIED TORQUE MODEL

Typical layer thicknesses of spin-torque devices are well below the exchange length. In this case
the magnetization can be assumed to be homogeneous in the perpendicular direction and hence the
torque can be described as averaged over the layer thickness without changing the dynamics of the
system. The most generic description of this averaged torque with respect to a normalized reference
magnetization M can be written as T = Tdamp + Tfield with

Tdamp = ηdamp(ϑ)
je~

2eµ0Mst
m × (m ×M) (9)

Tfield = ηfield(ϑ)
je~

2eµ0Mst
m ×M (10)

where we distinguish between two possible flavors of the torque, namely the so-called dampinglike
torque Tdamp and the fieldlike torque Tfield, see e.g. Ref. 9. The reference magnetization M is usually
chosen to match the expected spin polarization of the conducting electrons in the considered layer,
e.g. the orientation of the pinned-layer magnetization in the case of STT. The prefactor η represents an
arbitrary angular dependence with ϑ being the angle between the magnetization m and the reference
magnetization M, and t is the thickness of the considered layer.
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Equations (9) and (10) exactly reproduce the model introduced by Slonczewski for the description
of STT. In Ref. 10 it is shown that in the case of a general magnetic multilayer with possibly different
free and pinned-layer thicknesses, the angular dependence η of both the dampinglike and fieldlike
torque takes the form

η(ϑ)=
q+

A + B cos(ϑ)
+

q−

A − B cos(ϑ)
. (11)

The generalized torque description (9) and (10) is also expected to work for SOT devices. However, as
for STT, the free parameters for dampinglike and fieldlike torque cannot be derived from the system
parameters in a trivial fashion.

We propose to use the spin-diffusion model as introduced in the preceding section in order to
determine the free parameters of the generic torque model by a fitting procedure. Figure 3(a) depicts
the fitting result for an asymmetic STT structure with a 5 nm pinned layer and a 3 nm free layer
separated by a 2 nm spacer layer. For the parameter fitting, the magnetization in the pinned layer is
set homogeneously in z-direction and the magnetization in the free layer is set homogeneously in
the xy-plane with a tilting angle of ϑ to the pinned-layer magnetization. The spin accumulation s is
computed with the spin-diffusion model for various angles ϑ and the angular dependencies ηdamp

and ηfield are obtained by spatially averaging the torque given by (2) and projecting onto the generic
torque expressions (9) and (10). The free parameters q±, A, and B of expression (11) are then fitted
to the distinct values of ηdamp and ηfield separately. We use typical values for the system, namely we
set Ms = 8 × 105 A/m, D0 = 1 × 10�3 m2/s, β = β′ = 0.8, τsf = 32 fs, and J = 5.3 × 10�20 J for the
magnetic layers, D0 = 5 × 10�3 ms/s and τsf = 1 ps for the spacer layer and D0 = 5 × 10�3 ms/s and
τsf = 12.25 ps for the leads. The fit of the general Slonczewski model to the angular dependence as
computed by the spin-diffusion model shows an almost perfect agreement.

A similar procedure was performed for a system subject to SOT, see Fig. 3(b). Here we consider
a metallic underlayer with a thickness of 10 nm and material parameters typical for heavy metals,
namely D0 = 5 × 10�3 m2/s, C0 = 6 × 106 A/Vm, τsf = 2.5 × 10�17 s, and θ = 0.2. On top of the
heavy-metal layer we place a magnetic thin film with a thickness of 2 nm and material parameters

FIG. 3. Angular dependence η(ϑ) of the simplified spin-torque model fitted to the results of the spin-diffusion model (a) STT
in an asymmetric magnetic multilayer fitted the model of Slonczewski. The points mark the simulation results and the lines
show the fit. (b) SOT dependence on the diffusion length λsf in the magnetic layer.
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FIG. 4. Current induced switching of the free-layer magnetization in an STT device.

similar to the magnetic layers in the STT structure. A charge current in x-direction is applied in the
metal layer which is expected to generate a spin current in z-direction with a y-polarization due to
the spin-orbit interaction. With the reference magnetization M set in y-direction, the spin-diffusion
model reveals a constant prefactor η that does not depend on the angle ϑ for both the dampinglike
and fieldlike torque. We compute ηdamp and ηfield for different diffusion lengths λJ =

√
2D0τsf of the

magnetic material. The results, depicted in Fig. 3(b), show very similar values of ηdamp and ηfield

for λsf with values well below the layer thickness. With increasing λsf the fieldlike torque becomes
dominant which may be accounted to the fact that the conducting electrons are not able to transfer
their complete torque to the magnetization in this case.

STT SWITCHING

The proposed simplified model is benchmarked with the simulation of an STT switching
event. We consider the STT system introduced in the preceding section consisting of a pinned
layer and a free layer separated by a conducting spacer. The pinned-layer magnetization is initial-
ized in z-direction and considered fixed during simulation. In addition to the material parameters
introduced in the preceding section, we assume a uniaxial anisotropy with K = 105 J/m3 and
an axis in (0, 0.1, 1) direction in the free layer in order to avoid a metastable collinear situa-
tion. Moreover we assume an exchange constant A = 1.3 × 10�11 J/m and a damping α = 0.02.
The initial magnetization in the free layer is chosen to point parallel to the anisotropy axis in positive
z-direction. After relaxation of the free layer, a current of je = 2 × 1011 A/m2 is applied in positive
z-direction which corresponds to electrons moving in negative z-direction. The spin torque in this
case is expected to lead to a switching of the free-layer magnetization from positive to negative
z-direction.

Fig. 4 shows the switching dynamics computed with the full spin-diffusion model compared to
the results of the simplified model. Despite the relatively complex switching behaviour, the simplified
model shows a good agreement with the full diffusion model.

CONCLUSION

Using the spin-diffusion model for the computation of the free parameters of a simplified torque
model is a promising approach that enables the efficient simulation of both STT and SOT devices.
The presented method confirms the model of Slonczewski as it perfectly reproduces its angular
dependence and delivers a straightforward way to retrieve the free parameters of this model that
usually have to be determined experimentally. Moreover, the spin-diffusion model reveals the lack
of angular dependence of the torque for SOT devices. Compared to the solution of the spin-diffusion
model, that requires the assembly and solution of a linear system per timestep, the proposed method
is numerically cheap as it only requires a sparse matrix-vector multiplication. With our approach,
the full spin-diffusion model has to be solved only a few times for a system with given geometry
and materials to obtain the free parameters. The free parameters do not depend on the magnetization
configuration of the system and are hence valid throughout dynamical simulations.
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