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Abstract In mean-risk portfolio optimization, it is typically assumed that the assets follow
a known distribution P0, which is estimated from observed data. Aiming at an investment
strategy which is robust against possible misspecification of P0, the portfolio selection prob-
lem is solved with respect to the worst-case distribution within a Wasserstein-neighborhood
of P0. We review tractable formulations of the portfolio selection problem under model
ambiguity, as it is called in the literature. For instance, it is known that high model ambi-
guity leads to equally-weighted portfolio diversification. However, it often happens that
the marginal distributions of the assets can be estimated with high accuracy, whereas the
dependence structure between the assets remains ambiguous. This leads to the problem of
portfolio selection under dependence uncertainty. We show that in this case portfolio con-
centration becomes optimal as the uncertainty with respect to the estimated dependence
structure increases. Hence, distributionally robust portfolio optimization can have two very
distinct implications: Diversification on the one hand and concentration on the other hand.

Keywords Stochastic optimization · Robustness · Portfolio optimization · Model
uncertainty · Dependence uncertainty
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1 Introduction

The history of optimization is characterized by weakening the assumptions about the avail-
able information. Back in the old days, the paradigm was that both the objective function
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and the constraints are well known, deterministic functions. This strict assumption has been
weakened even in the early work of George Dantzig [9] by allowing some parameters to
be unknown, but assuming that they are realizations of known distributions and thus ran-
dom. Other pioneering works in the area of stochastic programming include Charnes and
Cooper [7], Tinter [53] and Wets [57]. More recently, the assumption of known distribu-
tions has been replaced by the weaker assumption that only a set of distributions is known
which includes the unknown true distribution. We call this set of distributions ambiguity set.
Optimizing with respect to the worst case distribution, i.e., the distribution contained in the
ambiguity set which yields the worst value of the objective function, leads to distributionally
robust decisions.

In this context, the portfolio selection problem is arguably one of the most prominent
problems. Introduced by Markowitz in the early 1950s, more than 250001 citations of his
celebrated work [34] speak for themselves. We refer to Brandt [6] and Steinbach [52]
for surveys listing some of the most important contributions in the vast field of portfolio
selection.

Adapting the ideas mentioned above, this paper discusses portfolio selection strategies
which are robust with respect to misspecification of the assets’ distribution. In other words,
we account for model uncertainty in the portfolio selection problem. Hence, our approach
falls into the field of robust portfolio optimization. Two perceptive reviews of the devel-
opments in this area were written by Fabozzi et al. [17] and Kim et al. [28]. The present
paper differs from most of the existing literature in that we rely on a purely non-parametric
approach which builds on the Wasserstein distance to construct the ambiguity set. Within
this setting, we contrast two fundamentally different ways to address the problem: Firstly,
we consider the case of model uncertainty with respect to the model for the joint distri-
bution of the portfolio’s assets, which we will refer to as model ambiguity. Secondly, we
assume that the marginal distribution of the assets are known and the model uncertainty
lies solely on the level of the dependence structure. The latter case is known as dependence
uncertainty. The gist of our analysis is that when increasing the level of model uncertainty,
portfolio diversification becomes optimal, while in the latter case of dependence uncertainty
portfolio concentration becomes optimal.

The remainder of this paper is structured as follows. Section 2 introduces ambiguity in
stochastic optimization in a general context. The portfolio selection problem under model
ambiguity is studied in Section 3, whereas Section 4 looks at dependence uncertainty in the
context of portfolio selection. The empirical study in Section 5 compares the two presented
approaches. Section 6 concludes.

2 Ambiguity Sets

The concept that probability models are given by ambiguity sets is quite popular in statis-
tics as there is a plethora of parametric and semi-parametric models, which are based on
confidence regions of parameters. The basic construction for parametric models, i.e., prob-
ability models of the form (Pθ , θ ∈ �), allows us to define an ambiguity set as a subset
(Pθ , θ ∈ �̂), which is determined by a parametric estimate θ̂ of θ and some confidence
region �̂ around it. Typical examples include:

1according to Google Scholar.
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– The scenario distribution stems from a normal distribution N(μ, σ 2), where μ and σ

are only known to lie within given bounds, i.e., μ1 ≤ μ ≤ μ2 and σ 2
1 ≤ σ 2≤ σ 2

2 .
– The multivariate distributions possess first and second moments, where the mean vector

μ satisfies μ1 ≤ μ ≤ μ2 (componentwise) and the covariance matrix � satisfies
�1 � � � �2 (in the sense of positive semidefinite ordering).

When it comes to semi-parametric and fully nonparametric ambiguity models, we have
seen different approaches emerge in recent years. For instance, ambiguity set containing all
distributions with given constraints on the moments are studied e.g. in [10, 13, 31]. This
approach can be extended to ambiguity sets which are characterized, additionally to the
moment bounds, by constraints on structural properties auch as symmetry, unimodality or
independence patterns, see Hanasusanto et al. [24]. Another field of research deals with
sample average approximations, where ambiguity sets appear as confidence regions, see e.g.
[5, 37, 59]. An overview of these and related topics can be found in the book by Consigli,
Kuhn and Brandimarte [8].

In contrast to the cited concepts above, this paper relies on a very intuitive approach,
where ambiguity sets are given by some baseline model P0 and a ball around P0 with respect
to some (pseudo-) distance for probability measures. Examples for such distances are:

– the bounded Lipschitz distance

dBL(P, P0) = sup

{∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dP0(x)

∣∣∣∣ :

|h(x) − h(y)| ≤ d(x, y); |h(x)| ≤ 1

}
;

== the Wasserstein distance (here of order 1)2

dW (P, P0) = sup

{∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dP0(x)

∣∣∣∣ :

|h(x) − h(y)| ≤ d(x, y)

}
; (1)

– the Fortet-Mourier distance

dFM(P, P0) = sup

{∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dP0(x)

∣∣∣∣ :

|h(x) − h(y)| ≤ L(x, y) · d(x, y)

}
,

where L(x, y) = max(‖x‖r , ‖y‖r , 1);
– the relative entropy (Kullback-Leibler pseudo-distance)

dKL(P, P0) =
∫

log

(
dP

dP0

)
(x) dP0(x);

– the Vapnik-Cervonenkis distance

dV C(P, P0) = sup {P(C) − P0(C) : C ∈ K} ,

where K is a Vapnik-Cervonenkis class, see Shorack and Wellner [51].

2Wasserstein distance of order 1 is sometimes referred to as Kantorovich distance.
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More details on the ideas behind the above definitions can be found in [41]. The following
facts are well known: The bounded Lipschitz distance metricizes the weak topology of
probability measures and therefore the empirical measure converges to the true one a.s.
in this distance. If the true measure has a finite first moment, then a.s. convergence also
holds with respect to the Wasserstein distance. Existence of higher moments is required for
the convergence in Fortet-Mourier distance. It was shown in [40] that the Fortet-Mourier
distance is a special case of the Wasserstein distance with a different metric on the real line.
In contrast, the relative entropy and the VC distance generate stronger topologies implying
that the empirical measure does not converge to the true one in these topologies. For this
reason, these distances are excluded from our considerations. If a first moment exists, then
the a.s. convergence of the empirical measure to the true measure in Wasserstein distance is
an easy consequence of the law of large numbers and the dominated convergence theorem.
However, rates of convergence have only been established recently, see Fournier andGuilin [21].

While the relative entropy as a concept for closedness of models was introduced by
Hansen and Sargent [25], Wasserstein neighborhoods were considered for the first time by
Pflug and Wozabal [44] and recently followed by Esfahani and Kuhn [16] as well as Gao
and Klowegt [22] and Ji and Lejeune [26]. In the remainder of this paper we restrict our
considerations to ambiguity sets defined by Wasserstein neighborhoods. In particular, we
set the distance d(x, y) = ||x − y||1 := ∑m

i=1 |xi − yi | in (1). This choice is motivated by
the fact that the expected return as well as the Average-Value-at-Risk functional, defined
below, are Lipschitz continuous with respect to this distance. This property will prove to be
useful when we discuss the portfolio selection problem below.

In all the approaches cited above, the model uncertainty aspect in decision making is
taken into account by the following concept: While for a single model P one considers the
standard stochastic program

min
x

{EP [Q(x, ξ)] : x ∈ X} ,

where Q is a cost function depending on the decision x and the random part ξ , in case of an
ambiguity set P one solves the minimax stochastic program

min
x

max
P∈P

{EP [Q(x, ξ)] : x ∈ X} . (2)

Such a problem formulation is called risk-neutral. As an extension, we might also look at
the risk-averse formulation

min
x

max
P∈P

{RP [Q(x, ξ)] : x ∈ X} . (3)

whereR is some risk-functional.
The existence of a solution of (3) is related to the existence of a saddle point of f (x, P ) :

(x, P ) �→ RP [Q(x, ·)]. Recall that the pair (x∗, P ∗) is called a saddle point for f , if for
any x ∈ X and P ∈ P

f (x∗, P ) ≤ f (x∗, P ∗) ≤ f (x, P ∗).
If (x∗, P ∗) is a saddle point, then x∗ is the minimizer of x �→ maxP f (x, P ) and
P ∗ ∈ argmaxP f (x∗, P ). The converse is not true: by searching for all saddle points, one in
general does not obtain all possible solutions of the minimax problem. In order to character-
ize all solutions of the minimax problem as saddle points, one has to impose stronger global
conditions, such as quasi-convexity and quasi-concavity: A function (x, P ) �→ f (x, P ) is
quasi convex-concave if {x : f (x, P ) ≤ c} is convex or empty for all P ∈ P and all c ∈ R

and at the same time {P : f (x, P ) ≥ c} is convex for all x ∈ X and all c ∈ R. For such
functions, Sion’s famous saddle point Theorem holds, which is given in Appendix B.



A Review on Ambiguity in Stochastic Portfolio Optimization

3 Portfolio Selection Under Model Ambiguity

We start this section by reviewing the classical mean-risk framework, which goes back
to Markowitz [34] and his mean-variance approach. In the literature, alternatives to
Markowitz’ choice of the variance as a risk functional have been proposed. For example, the
semi-variance [35], the mean absolute deviation [29], the Value-at-Risk [4], the Average-
Value-at-Risk [47] or, more generally, convex risk measures [19] as well as coherent risk
measures [3] were proposed.

In the remainder of this paper, let the random vector ξ = (ξ1, . . . , ξm)
describe the ran-
dom return of the m risky assets in the capital market under consideration. Let the decision

variable x = (x1, . . . , xm)
 ∈ X :=
{
x ∈ R

m+ : ∑m
j=1 xj = 1

}
denote the proportion of the

portfolio to be invested in the m risky assets. Notice that we do not allow for short-selling.
Moreover, assume that λ ∈ R+ quantifies the investor’s risk-aversion andR is her preferred
risk functional. The portfolio selection problem can then be formulated as the following
single-stage stochastic program

max
x∈X

E

(
x
ξP

)
− λR

(
−x
ξP

)
, (4)

where P refers to the known probability distribution of the random vector ξ representing
the asset returns. To put problem (4) into words, we aim to maximize the risk adjusted
expected return of the portfolio, where the risk adjustment is controlled by the risk aversion
coefficient λ as well as the risk functionalR. Together λ andR are assumed to capture the
investor’s risk preferences. Notice that for a fixed probability space (�, σ, μ) the risk func-
tional R : (�, σ, μ) → R assigns a real value to the random variable X, which represent
the random future losses. To be more precise, R(X) quantifies the riskiness of X which
means high values ofR indicate more risk and hence a less desirable situation.

We choose the Average-Value-at-Risk as a risk functional throughout most of our
analysis:

AV@Rα(X) = 1

1 − α

∫ 1

α

F−1
X (t) dt,

where F−1
X denotes the inverse distribution function of the random variable X. Notice that

this definition implies that values of α are typically chosen close to 1 as we consider the
upper tail of the loss distribution. As shown in Rockafellar and Uryasev [47], the AV@R
allows to reformulate problem (4) as a linear program in case P is a discrete probability
distribution.

In practice, the distribution P of the future returns is typically not known. However, sta-
tistical methods allow us to come up with an - hopefully accurate - estimate P0 of the true,
unknown probability distribution P . Therefore, it seems reasonable to assume that the deci-
sion maker takes the available information in form of P0 into account, while incorporating
the ambiguity with respect to P0 into her decision. We model this situation by defining the
ambiguity set as the set of distributions, whose Wasserstein distance to the so-called refer-
ence distribution P0 does not exceed a certain threshold κ . That is, we define the ambiguity
set as

Bκ (P0) = {Q ∈ P
(
R

m
) : dW (P0,Q) ≤ κ},
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where P (Rm) denotes the space of all Borel probability measures on Rm. We can now for-
mulate the distributionally robust counterpart of the stochastic program (4) as the following
maximin problem

max
x∈X

min
Q∈Bκ (P0)

E

(
x
ξQ

)
− λAV@Rα

(
−x
ξQ

)
. (5)

As stated in Wozabal [58], problem (5) is algorithmically intractable for the following three
reasons: Firstly, it contains infinitelymany constraints. Secondly, the solutions of the maximin
problem (5) are elements of an infinite dimensional space. Lastly, solving for a saddle point
of the objective function is usually harder than simply finding a maximum or a minimum.
Nevertheless, three distinct approaches to solve problem (5) overcome thementioned difficulties:
Pflug and Wozabal [44], who first considered the problem, restricted their analysis to all the
discrete measures with atoms identical to those of P0, which is assumed to be the empirical
measure P̂n constructed from n observations of the random vector ξ. They then proposed
a successive convex programming solution method to solve the resulting semi-infinite pro-
gram. As an alternative, Pflug et al. [42] directly characterized the worst case distributions
Q�, which satisfies dW (P0,Q

�) = κ . Hence, problem (5) can be solved by a linear pro-
gram. Recently, Esfahani and Kuhn [16] derived a tractable reformulation of (5) as an LP
by relying on state-of-the-art global optimization techniques. Loosely speaking, the authors
change the location of the atoms of the empirical measure P̂n rather than their probability
weights, as done in [44]. Figure 1 illustrates this difference. In the remaining part of this
section, we review and compare these three approaches to solve problem (5).

Proceeding in chronological order, we start our literature review with the paper by Pflug and
Wozabal [44]. The authors proposed the following successive convex programming algorithm:

1. Set i = 0 and P0 =
{
P̂n

}
.

2. Solve the outer problem

max
x∈X,t∈R

t

s.t.: E
(
x
ξQ

)
− λAV@Rα

(
−x
ξQ

)
≥ t ∀Q ∈ Pn,

and call the optimizer (xi, ti ).
3. Set Yx = (xi)


ξ and solve the inner problem

min
Q∈Bκ

(
P̂n

)E
(
YQ

x

)
− λAV@R

(
−YQ

x

)
,

call the optimizer Pi and let Pi+1 = Pi ∪ {Pi} .

Fig. 1 The left panel illustrates an empirical measure P̂3 in R
2 with support points (ξ1, ξ2, ξ3). The mid-

dle panel illustrates how [44] find the worst case probability measure, namely by changing the probability
weights (q1, q2, q3) of the support points (ξ1, ξ2, ξ3). The right panel illustrates the approach in [42] as well as

[16]: they compute the worst case distribution by changing the support points (ξ1, ξ2, ξ3) to
(
ξ

Q�

1 , ξ
Q�

2 , ξ
Q�

3

)
while leaving their probability weights unchanged
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4. If eitherPi+1 = Pi or the optimal value of the inner problem equals ti , then a saddle point
of problem (5) is found and the algorithm stops. Otherwise, set i = i +1 and go to step 2.

As Pn only contains finitely many objects, the outer problem can be solved as an LP. The
inner problem however has a more complicated structure. As indicated above, [44] restrict
their analysis to probability measures Q which live on the same n points as the empiri-
cal measure P̂n. Hence, in the inner problem one optimizes over the probability weights
(qi)i=1,...,n of the n sample points, which have equal weight under the empirical measure
P̂n. Still, the inner problem is non-convex due to bilinear terms defining theWasserstein dis-
tance and the AV@R.We refer to section 4.2 of the follow-up paper byWozabal [58], which
proposes a method to approximately solve this program rewriting it in terms of differences
of convex (D.C.) functions.

Let us now come to the paper by Pflug, Pichler and Wozabal [42], who explicitly derived
the worst case distribution of Q� ∈ Bκ (P0) for fixed portfolio weight x. In order to adapt
the more general results in [42], notice that the maximin problem (5) is equivalent to the
following minimax problem

min
x∈X max

Q∈Bκ (P0)
(λ + 1)Aα(−x
ξQ) (6)

whereAα is a mixture of AV@R’s with different α’s, i.e., it has the Choquet representation:

Aα(X) = 1

λ + 1
AV@R0(X) + λ

λ + 1
AV@Rα(X).

We denote by Q� the worst case distribution in the Wasserstein-ball Bκ (P0) for a fixed
x, i.e., Q� = argmaxQ∈Bκ (P0)

{Aα(−x
ξQ)}. Applying the result in [42] to Aα , we find

that the random vector of the asset returns ξQ� =
(
ξ

Q�

1 , . . . , ξ
Q�

m

)

under the worst case

distribution Q� is given by

ξ
Q�

j =
{

ξ
P0
j + sign(xj )sign(Z) κ

k(1+λ)

(
λ

1−α
+ 1

)
if |xj | = ||x||∞

ξ
P0
j otherwise

,

for all j = 1, . . . , m,whereZ is in the set ∂Aα

(−x
ξP0
)
of subgradients ofAα at−x
ξP0

and k = ∣∣{j ∈ {1, . . . , m} : |xj | = ||x||∞
}∣∣. Setting the reference distribution P0 to the

empirical distribution P̂n, problem (6) can be written as the following linear program

min
a,W,x,z

λa + λ

1 − α

1

n

n∑
i=1

zi − 1

n

n∑
i=1

x
ξi + W (7)

s.t.:
m∑

j=1

xj = 1

zi ≥ −x
ξi + W − a i = 1, . . . , n

xj

κ

λ + 1

(
λ

1 − α
+ 1

)
≤ W j = 1, . . . , m

xj ≥ 0, zi ≥ 0 i = 1, . . . , n; j = 1, . . . , m.

Notice that a very important implication of the above is that under high model ambiguity
(i.e., κ → ∞) portfolio diversification becomes optimal. We refer to [42] for a detailed and
more general proof of this result. It should be mentioned that this result is confirmed by
Esfahani and Kuhn [16], which we review next.
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In the above discussion of [44], we have seen that quite evolved techniques are needed
to solve problem (5), when restricting the feasible set to discrete measures with the same
number of atoms as P0, fixing the location of these atoms and optimizing over their proba-
bility. But what happens when one is more ambitious and instead fixes the probability and
optimizes over the location of the atoms? Esfahani and Kuhn [16] show that this leads to a
tractable reformulation of the problem as an LP. We only restate their result here and refer
to the original paper [16] for their derivation of more general results than needed in our
context. First, we provide yet another equivalent reformulation of the original problem (5):

min
x∈X,τ∈R max

Q∈Bκ (P0)
E

[
max
k≤2

ak

(
x
ξQ

)
+ bkτ

]
,

where a1 = −1, a2 = (1 − α + λ)/(α − 1), b1 = λ and b2 = λα/(α − 1). Assuming
that P0 = P̂n and that the support of the true distribution P of ξ is contained in the set
� := {ξ ∈ R

m : Cξ ≤ d} , where C and d are of appropriate size, Esfahani and Kuhn [16]
show that the above minimax problem can be written as the following linear program

min
x,τ,μ,z,γik

μκ + 1

n

n∑
i=1

zi (8)

s.t.:
m∑

j=1

xj = 1

bkτ + ak

(
x
ξi

)
+ γ 


ik (d − Cξi) ≤ zi k = 1, 2; i = 1, . . . , n

|C
γik − akxj | ≤ μ k = 1, 2; i = 1, . . . , n, j = 1, . . . , m

γik ≥ 0, x ≥ 0 k = 1, 2; i = 1, . . . , n, j = 1, . . . , m.

Comparing the three discussed approaches, it is clear that solving the LP (7) takes the
least computational effort as the worst case distribution is known a priori. The LP (8) given
yields the same solution as (7), while being computationally considerably more expensive.3

Still the results in Esfahani and Kuhn [16] allow us to solve the problem surprisingly fast
given that the worst case distribution is not computed a priori. Lastly, we should mention that
the results in [44] cannot keep up. The SCP algorithm is computationally very intense and
a large sample size n is required if the algorithm should produce results similar to those of
the other two approaches. Here the follow-up paper by Wozabal [58] should be mentioned,
which sightly improves the requirement of a large sample size n but does so at the cost of
even more computational complexity.

We refer to Section 5, where we present an empirical study based on problem (7) or
equivalently (8) and consider the optimal portfolio decomposition when the level κ of model
ambiguity increases.

4 Portfolio Selection under Dependence Uncertainty

In many cases of practical interest, one might be able to determine the distribution of a port-
folio’s individual assets but fail to estimate their dependence structure accurately. In such a
situation only the dependence structure of the asset returns is ambiguous and not their joint

3Notice that the LP in (8) has 2 + m + 3n variables and 2n + 4mn inequality constraints compared with
2 + m + n variables and m + n inequality constraints in the LP (7).
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distribution. This situation is known as dependence uncertainty. The main motivation to
study this topic comes from risk management, as it might lie in the nature of an application
at hand, that the dependence structure of different risks cannot be estimated with high accu-
racy. Still the dependence structure is crucial when it comes to aggregating the individual
risks. We refer to Aas and Puccetti [1] for an illustrative example. Since risk measurement
is the corner stone of any portfolio selection strategy, the methods and results concerning
dependence uncertainty are particularly relevant in our context. As it turns out, computing
bounds for aggregated risks with given marginal distributions is a challenging task on its
own. Therefore, we provide a short literature review and some examples in the following.

4.1 Background

First of all, let us introduce the notion of copulas. The intriguing yet simple idea underlying
copulas is that they allow us to split the modeling of multivariate random variables into
two parts: Firstly, the modeling of the marginal distributions and secondly, the modeling
of the dependence between the univariate random variables. The latter is done via copula
functions. Thus, in the presence of dependence uncertainty the first task is straight forward
whereas the second task is complicated due to the lack of information. To put it in a nutshell:
dependence uncertainty means marginals known and copula unknown.

Formally, let H be an m-dimensional cumulative distribution function with margins
F1, F2, . . . , Fm. Then there exists a function C, which is called m-copula such that

H(t1, t2, . . . , tm) = C (F1(t1), F2(t2), . . . , Fm(tm)) , ∀t1, . . . , tm ∈ R.

This basic connection is known as Sklar’s Theorem. For a precise definition of copulas and
an introduction to the topic, the reader is referred to Nelsen [38].

Let us consider a simple example to understand the essence of dependence uncer-
tainty and its connection to the concept of copulas: What is the Average-Value-at-Risk
AV@Rα(U +V ) of the sum of two standard uniforms U and V , i.e.,U, V ∼ Uniform[0, 1]?
The answer depends on the copula linking the uniforms U and V :

1. Assume U and V are counter-monotonic, i.e., perfectly negative dependent. Their cop-
ula is given by the lower Fréchet Hoeffding bound W(u, v) = max(u + v − 1, 0) for
all u, v ∈ [0, 1]. In this case AV@RW

α (U + V ) = 1 for all α.4

2. Assume U and V are comonotonic, i.e., perfectly positive dependent. Their copula is
given by the upper Fréchet Hoeffding bound M(u, v) = min(u, v) for all u, v ∈ [0, 1].
In this case AV@RM

α (U + V ) = 1 + α.
3. Assume U and V are independent and hence coupled with the product copula

�(u, v) = uv for all u, v ∈ [0, 1]. A tedious calculation shows that if α > 0.5,
AV@R�

α (U + V ) = 2 − 2
√
2(1 − α)/3.

Given that we have no information regarding the copula linking U and V , the best we can
do is compute bounds for AV@Rα(U + V ):

1 = AV@RW
α (U + V ) ≤ AV@RC

α (U + V ) ≤ AV@RM
α (U + V ) = 1 + α,

for any bivariate copula C. Note that these bounds are very far apart. This issue is addressed
below. Let us first discuss the upper bound. A nice property of the AV@R is that the copula
which yields the upper bound turns out to be the comonotonic copula M . This property

4Notice that only in this example we indicate the copula linking U and V in the superscript of AV@R.
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holds true in arbitrary dimensions due to the fact that the AV@R is subadditive, see [39].
Intuitively, it is clear that perfect positive dependence implies no diversification benefit
when trying to minimize the overall risk of your portfolio. Hence, this dependence should
be the least favored by any investor. The AV@R reflects this, whereas other risk functionals,
like the Value-at-Risk (V@R), do not. In fact, finding upper bounds for the V@R is much
harder. Makarov [33] and Rüschendorf [48] solved this problem in two dimensions, showing
that the following copula is the one maximizing the V@R with confidence level α:

Cα(u, v) =
{
max(W(u, v), α) (u, v) ∈ [α, 1] × [α, 1]
M(u, v) otherwise

. (9)

As can been seen, counter-monotonicity in the upper tail is needed for the construction.
This is precisely the reason why the result cannot be generalized to higher dimensions
and leads us directly to the discussion of the difficulties that arise when computing lower
bounds in dimensions strictly larger than 2. As a matter of fact, the concept of counter-
monotonicity does not naturally extend to higher dimensions. To give some intuition, perfect
negative dependence between two random variables implies that whenever one random vari-
able moves into one direction, the other one moves into the opposite direction. Arguably,
considering perfect negative dependence between three random variables is not as simple
since it is not clear when three direction stand in maximal contrast. More formally, this is
reflected by the fact that the multivariate extension of the lower Fréchet Hoeffding bound
W(u1, . . . , un) = max

(∑n
i=1 ui − n, 0

)
ceases to be a copula, see [38]. We refer to Wang

and Wang [55] for a discussion of possible ways to define perfect negative dependence in
arbitrary dimensions.

In the context of dependence uncertainty, the best and worst case value of the V@R
as well as the worst case value of the AV@R are in general unknown. Nevertheless,
these bounds have been extensively studied in recent years and partial solutions have been
obtained, see Puccetti and Wang [46] for an overview. Most importantly, Puccetti and
Rüschendorf [45] introduced the so-called rearrangement algorithm which is a fast proce-
dure to numerically compute the bounds of interest. Under quite restrictive assumptions,
analytical bounds can be computed based on the notion of complete mixability, which was
introduced in Wang and Wang [54].

In practical applications, these lower and upper bounds cease to be useful as they are
too far apart. Thus, the case where additional dependence information is available, received
some attention in recent years. The literature often refers to this topic as partial dependence
uncertainty in contrast to complete dependence uncertainty, which we discussed above.
Bounds for aggregated risks have been computed in the case where (a) the copula is given
on a subset of the unit cube, (b) bounds for the copula itself are given or (c) bounds for the
variance of the aggregated risks are given. We refer to the survey by Rüschendorf [50] and
references therein. Most interestingly, we want to point out the work by Lux and Papapan-
toleon [32], who among other intriguing results derived V@R-bounds for the case where the
copula is known to be close in the sense of a statistical distance to some reference copula.

This short detor to the existing literature on dependence uncertainty should serve as a
motivation to model the situation where the marginal distribution of the individual assets is
assumed to be known, whereas their dependence structure (i.e., the copula linking them) is
only partially known in the context of portfolio selection. The fact, that the combination of
portfolio optimization with dependence uncertainty is of practical and theoretical interest,
has of course been noted by others before. For instance, Kakouris and Rustem [27] intro-
duce an investment strategy which is robust against possible misspecification of the chosen
parametric copula family. On the contrary, the more involved framework by Doan et al.
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[12] does not need any parametric assumptions. The authors derive AV@R bounds for the
Fréchet class of discrete, multivariate and overlapping marginals with finite support. Opti-
mizing these bounds leads to an investment strategy based on a minimum of distributional
assumptions.

We, however, take a different and novel approach to the portfolio selection problem under
dependence uncertainty, which is very much in the spirit of Section 3:

max
x∈X

min
C∈Cε (C0)

E(x
ξ) − λR(−x
ξC), (10)

where C denotes the set of all m-dimensional copulas and the ambiguity sets Cε(C0) :=
{C ∈ C : dW (C0, C) ≤ ε} refers to the set of m-copulas which are close to some reference
copula C0 with respect to the Wasserstein distance. Since the copula has no impact on the
expected value of x
ξ , we omit the letter C in the superscript of the first ξ in (10). We use
the Wasserstein distance as a distance measure between copulas in order to guarantee that
problem (10) is defined similarly to the portfolio selection problem under model ambiguity
introduced in Eq. 4. In fact, the only difference is that in (10) we assume that the marginal
distributions of the asset returns are known whereas in (4) this assumption is not made. Still
the question may arise why the Wasserstein distance is a meaningful distance measure for
copulas. The reason lies in the following fact: Suppose that the pairs of random variables
(X1, X2) resp. (Y1, Y2) have the same marginals F1 and F2 but differ in their copulas CX

and CY . If h is a Lipschitz function with two arguments and Lipschitz constant L and both
quantile functions F−1

1 and F−1
2 are Lipschitz with constant K , then

E [|h(X1, X2) − h(Y2, Y2)|] ≤ LKdW (CX,CY ).

More generally, take a distribution P on R
m with non-Lipschitz quantile functions, which

are assumed not to grow faster then −xγ near zero and (1−x)γ near 1, then one may define
β-Lipschitz functions h, which satisfy

|h(x1, . . . , xm) − h(y1, . . . , ym)| ≤ L

m∑
i=1

∣∣∣∣sgn(xi) · |xi |β − sgn(yi) · |yi |β
∣∣∣∣,

for β < 1. If β < 1/γ , then P �→ ∫
h dP is, for fixed marginals, Lipschitz in the

Wasserstein distance of the copula.
Concerning the choice of the risk functional R, we want to point out that the AV@R is

aggregation-robust, see Embrechts et al. [14], which implies that the AV@R is less sensitive
to model uncertainty at the level of the dependence structure than, for instance, the Value-
at-Risk. Hence, the AV@R will be of special interest in our subsequent analysis.

4.2 Complete Dependence Uncertainty

Before discussing how to approach problem (10) computationally, we first want to consider
the case of complete dependence uncertainty: Assume that the degree of dependence uncer-
tainty, given by the radius ε of the ambiguity set in (10), converges to infinity. Then the
ambiguity set Cε(C0) extends to the set of all copulas C. Thus, we obtain the problem

max
x∈X

min
C∈C E(x
ξ) − λR(−x
ξC). (11)

In the following we show that the above problem can be simplified significantly when
we restrict our considerations to (a) subadditive, (b) comonotone additive and (c) positively
homogeneous risk functionalsR. A risk functionalR is said to be

(a) subadditive, if for all random variables X and Y ,R(X + Y ) ≤ R(X) + R(Y ).
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(b) comonotone additive, if for any comonotonic5 random variables X and Y it holds that
R(X + Y ) = R(X) + R(Y ).

(c) positively homogeneous, if for all random variables X and all constants c ≥ 0 it holds
thatR (cX) = cR (X) .

We refer to [43] for a detailed discussion of these and other properties of risk functionals. In
the following we use the notation ξj to denote the j -th component of the m−dimensional
(random) vector ξ .

Proposition 1 If the risk functional R is subadditive, comonotone additive and positively
homogeneous, then

max
x∈X

min
C∈C E(x
ξ) − λR(−x
ξC) = E

(
ξj�

) − λR(−ξj�),

for any j� ∈ argmaxj E
(
ξj

) − λR(−ξj ).

Proof First notice that

R
(
−x
ξC

) (a)≤
m∑

j=1

R
(−xj ξj

) (b)= R
(
−x
ξM

)
,

for all copulas C. Hence, we have that maxC∈C R
(−x
ξC

) = R
(−x
ξM

)
and we obtain

max
x∈X

min
C∈C E(x
ξ) − λR(−x
ξC)

= max
x∈X

E(x
ξ) − λR(−x
ξM)

(b)= max
x∈X

m∑
j=1

xjE(ξj ) − λ

m∑
j=1

R(−xj ξj )

(c)= max
x∈X

m∑
j=1

xj

(
E(ξj ) − λR(−ξj )

)

= E
(
ξj�

) − λR(−ξj� ),

for any j� ∈ argmaxj∈{1,...,m} E
(
ξj

) − λR(−ξj ). In the last equality we use the fact that X
is the m-dimensional unit simplex.

Note that due to the high precision of modern data processors the argmax set will in prac-
tice only contain one element. Thus, we find that complete dependence uncertainty implies
that concentration of the portfolio into one single asset is optimal. At first, this insight
might be somewhat counterintuitive since putting all the capital into a single asset does not
seem to be a robust decision. In fact, the decision when facing high model uncertainty on
the level of the joint distribution could not differ more from the decision which is optimal
under complete dependence uncertainty: the first implies portfolio diversification, the lat-
ter portfolio concentration. However, looking at it from the technical side, on the one hand

5Two random variables X and Y are said to be comonotonic if there exists a real-valued random variable Z

and non-decreasing functions f1 and f2 such that X = f1(Z) and Y = f2(Z) or equivalently if the copula
linking them is given by the comonotonic copula M .
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subadditivity rewards portfolio diversification but on the other hand comonotone additivity
does not attribute any diversification benefits in case of comonotone losses. Hence, without
any knowledge of the dependence between the asset returns, the worst case is that all asset
prices rise and fall simultaneously. Basing our decision on this worst case, portfolio diver-
sification cannot be beneficial. Rather, investing into a single asset, namely one of those
which performs best, is optimal.

Alternatively, we can approach the result from an information theoretical point of view: a
decision is better the more informed it is. The equal weighted portfolio investment strategy
requires no information at all. Thus, equally-weighted portfolio diversification is optimal
in case of high model ambiguity and suboptimal under complete dependence uncertainty.
Portfolio concentration, however, requires full information on the marginal distributions to
determine which asset is the best. Therefore, it is not surprising that portfolio concentration
is optimal when the model uncertainty lies solely on the level of the dependence structure.

We conclude that subadditivity, comonotone additivity and positively homogeneity are
indeed reasonable properties for risk functionals in the portfolio selection problem under
dependence uncertainty. Let us therefore take a closer look at risk functionals with these
three properties. Spectral risk measures, introduced by Acerbi [2], and distortion risk mea-
sures, which developed from research on premium principles byWang [56], are well-known
families of risk functionals with these properties as they are coherent (in the sense of Artzner
et al. [3]) and comonotone additive and law invariant, see [20, 49]. Arguably, the most rel-
evant representative of these families is the AV@R, as it can be seen as the basic building
block for spectral risk measures, see Kusuoka [30].

Nevertheless, well known risk functionals violate at least one of the mentioned proper-
ties: the variance (which has neither of these properties), the standard deviation (which is not
comonotone additive), the Value-at-Risk (which is not subadditive) and expectiles (which
are in general not comonotone additive), see Emmer et al. [15]. The questions arises what
happens if one of the latter risk functionals is chosen in the portfolio selection problem (11)
under complete dependence uncertainty. The following example addresses this question.

Example 1 Let some portfolio be composed of two assets. We represent the two assets by
random variables U and W , where W = 2V 2 and U and V are both Uniform[0,1]. Thus,
the second asset promises a higher return at a higher risk. For 0 ≤ x ≤ 1, the portfolio with
weights 1 − x resp. x has return

YC
x = (1 − x)U + x2V 2,

where C denotes the copula linking U and V . Assuming the copula C is unknown leads to
the following portfolio selection problem:

max
x∈[0,1]

min
C∈C E(YC

x ) − λR(YC
x ). (12)

We analyze four different risk measures R: i) the variance (Var), ii) the standard deviation
(Std), iii) the Average-Value-at-Risk (AV@R) and iv) the Value-at-Risk (V@R). In case
i) and ii), R(YC

x ) is maximal if Cov(U, V 2) is maximal. According to Theorem 5.25 in
[36], this means that U and V 2 are comonotone, i.e., the worst case copula is given by
the comonotonic copula M and we can set V = U . The same statement holds in case
iii) where maxC∈C AV@R(YC

x ) = AV@R(YM
x ). In case iv), it was mentioned above that

maxC∈C V@R(YC
x ) = V@R(Y

Cα
x ) where the worst case copula Cα is given in Eq. 9. Note



G. Ch. Pflug, M. Pohl

that Cα depends on the confidence level α but not on the portfolio weight x. Problem (12)
can now be solved explicitly for the four different choices ofR:

i) maxx∈[0,1] E(Yx) − λVar(YM
x ) = maxx∈[0,1] 1

2 + x
6 − λ

(
1
12 + x

6 + 19x2
180

)
.

ii) maxx∈[0,1] E(Yx) − λStd(YM
x ) = maxx∈[0,1] 1

2 + x
6 − λ

√
1
12 + x

6 + 19x2
180 .

iii) maxx∈[0,1] E(Yx) − λAV@Rα(YM
x ) = maxx∈[0,1] 1

2 + x
6 − λ

(
4α2x+αx+x+3α+3

6

)
.

iv) maxx∈[0,1] E(Yx) − λV@Rα(Y
Cα
x )

= maxx∈[0,1] 1
2 + x

6 − λmin
(
2xα2 + (1 − x), α(1 − x) + 2x

)
for α ≥ 0.5. 6

The optimal portfolio decomposition for the four different risk functionals is illustrated in
Fig. 2 as a function of λ: For low risk aversion λ the portfolio is concentrated in second
asset which promises a higher return, whereas in case of high risk aversion, the portfolio
is concentrated in the less risky first asset. As indicated by Proposition 1, when using the
AV@R as a risk measure, the optimal portfolio is concentrated for all λ (see the second
panel from the bottom in Fig. 2). The panel at the bottom of Fig. 2 shows that the same also
holds true when using the V@R. In case i) and ii) we observe that the portfolio is composed
for certain values of risk aversion. For instance, in case ii) λ = √

695/49 ≈ 0.54 implies
that portfolio diversification into half/half is optimal.

This example shows us that independently of the chosen risk functionals, optimal port-
folios under complete dependence uncertainty are typically concentrated. Only for specific
values of the risk aversion coefficient λ it might happen that the portfolio is composed. For
subadditive, comonotone additive and positively homogeneous risk functionals, composed
portfolios can even be ruled out a priori, which constitutes another advantage of this class of
risk measures. In fact, we can go even further and conjecture that for any risk functional the
optimal portfolio under complete dependence uncertainty is never composed of more than
two assets.

Summing up, portfolio concentration is a robust decision when facing complete depen-
dence uncertainty and the choice of subadditive, comonotone additive and positively
homogeneous risk functionals is particularly convenient in this context.

4.3 Partial Dependence Uncertainty

Let us now discuss problem (10) for ε > 0. In particular, we assume that a reference copula
C0 is given and we consider an ambiguity set of copulas which are close to this reference
copula. In the spirit of Section 3, we avoid all kinds of parametric assumptions and choose
the empirical copula Ĉn to be the reference copulaC0. The empiricalm-copula Ĉn generated
by n points is defined as

Ĉn (u1, . . . , um) = 1

n

n∑
i=1

1
(
Ui,1 ≤ u1, . . . , Ui,m ≤ um

)
, (13)

with u1, . . . , um ∈ [0, 1] and Ui,j = nF̂j (ξi,j )/(n + 1) for all i = 1, . . . , n and j =
1, . . . , m, where F̂j denotes the empirical marginal distribution function of asset j , the
matrix (ξi,j )i=1,...,n;j=1,...m contains n observations of the m asset returns and the scaling

6For the computation of V@Rα(Y
Cα
x ) Proposition 1 in Denuit et al. [11] is very useful.



A Review on Ambiguity in Stochastic Portfolio Optimization

Fig. 2 The optimal portfolio decomposition of the portfolio selection problem under complete dependence
uncertainty, which is given in Eq. 12, is shown for four different risk functionals R as a function of the risk
aversion λ ∈ [0, 1] and for fixed α = 0.95. For a fixed λ, the bright area corresponds to the fraction x which
should be invested in the second asset whereas the dark area gives the optimal weight 1 − x of the first asset

factor n/(n + 1) is only introduced to avoid potential problems at the boundary of [0, 1]m,
see Genest et al. [23]. Various conditions under which Ĉn is a consistent estimator of the
true underlying copula are given in Fermanian et al. [18]. In the formulation of problem
(10) the ambiguity set Cε(C0) contains infinitely many objects for all ε > 0. This reminds
us of the more general, yet similar problem (5) and the ambiguity set Bκ (P0). As shown in
[16, 42] and discussed in Section 3, when setting P0 = P̂n, the worst case distribution also
lives on n points. Thus, we conjecture that when setting C0 = Ĉn, the worst case copula
also lives on n points. We therefore restrict our considerations to the smaller set Cε,n(Ĉn) :={
C ∈ Cn : dW (C, Ĉn) ≤ ε

}
of all empirical m-copulas resulting from n observations which

are close to Ĉn. This restriction as well as choosing the AV@R as a risk functional, leads to
the following problem:

max
x∈X

min
C∈ Cε,n(Ĉn)

E

(
x
ξ

)
− λAV@Rα

(
−x
ξC

)
. (14)

In order to solve this problem, we have to understand the objects in the set Cε,n(Ĉn). From
definition (13) we know that any empirical copula C ∈ Cn is determined by its support
points Ui,j = nF̂j (ξi,j )/(n + 1), where i = 1, . . . , n and j = 1, . . . , m. The construc-
tion in (13) guarantees that the margins of the distribution induced by (Ui,j ) are uniformly
distributed on [0, 1]. Figure 3 shows an example of points

(
Ui,j

)
i=1,...,n;j=1,2 generating
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Fig. 3 The left panel shows a scatter plot of points (Ui,j )i=1,. . . ,10,j=1,2 generating the empirical copula Ĉn

with n = 10 plotted in the right panel

an empirical bivariate copula. This graph illustrates the so-called chess-tower property,
which is generally satisfied by all points

(
Ui,j

)
i=1,...,n;j=1,...,m generating an empirical cop-

ula C ∈ Cn: For fixed j ∈ {1, . . . , m} and fixed k ∈ {1, . . . , n} there exists a unique
i ∈ {1, . . . , n} such that Ui,j = k/(n + 1), since Ui,j = nF̂j (ξi,j )/(n + 1) = Ri,j /(n + 1)
where (Ri,j ) denotes the ranks corresponding the the observations (ξi,j ). This implies that
there are (m − 1)!n! elements in the set Cn.

Hence, solving problem (14) for fixed portfolio weights x amounts to a combinato-
rial problem. Solving it by enumeration requires to compute the Wasserstein distance
dW (C, Ĉn) for all (m− 1)!n! empirical copulas C in Cn. Even for fixed portfolio weights x,
this task is computationally infeasible for reasonable values of m and n. However, we can
propose a heuristic, which allows us to rapidly compute a lower bound CL ∈ Cε,n(Ĉn) and
an upper bound CU ∈ Cn \ Cε,n(Ĉn) such that

AV@Rα

(
−x
ξCL

)
≤ max

C∈ Cε,n(Ĉn)
AV@Rα

(
−x
ξC

)
≤ AV@Rα

(
−x
ξCU

)
, (15)

for all x ∈ X. An illustration of the “true” worst case copula and the corresponding bounds
can be seen in Fig. 8 in the appendix. Let us sketch the main idea behind the proposed heuris-
tic: First, note that the discrete counterpart Mn of the comonotonic copula M is defined by
the points Ui,j = i/(n + 1) for all i and j , i.e., Mn lives on the main diagonal of the unit
cube. Therefore, our heuristic iteratively transports points to the main diagonal of the unit
cube starting with the smallest points in the lower tail of the copula until the bound ε of the
maximal feasible Wasserstein distance is exceeded. The last feasible discrete copula is set
to be CL and the first infeasible copula defines CU . Appendix A describes this heuristic for
the case m = 2. The procedure extends naturally to higher dimensions m. We omit a further
discussion here.

5 Empirical Study: Concentration Versus Diversification

In the example studied in this section, the asset universe consists of the following six indices:
S&P 500, TOPIX, FTSE China B35, EURO STOXX 50, FTSE 100 and NIFTY 500. The
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Fig. 4 The graph on the left shows six equity indices in 2016, which have been normalized to 1 on January
1, 2016. The table on the right shows the expected value as well as the 95%-AV@R of the corresponding
daily losses

markets corresponding to these indices are USA, Japan, China, Eurozone, UK and India. We
look at daily returns from the year 2016 (i.e., January 1, 2016 to December 31, 2016) com-
puted from the prices in USD7 of the indices which we normalized to one at the initial time.
Figure 4 shows these normalized prices and summarizes the expected value and the AV@R
of the corresponding returns. The data

(
ξi,j

)
i=1,...,n;j=1,...,m, consisting of n = 260 obser-

vations of daily returns of m = 6 assets, is retrieved from the Thomson Reuters datastream
licensed at the University of Vienna.

The aim of this empirical study is to graphically compare the two distinct approaches in
Sections 3 and 4: Firstly, we solve the portfolio selection problem under model ambiguity
as given in (5) relying on the methods of Pflug et el. [42] and Esfahani anf Kuhn [16].
Thus, we solve the LP (7) and (8) given ξ, α and λ for different values of κ . It should be
mentioned once more that the two LPs yield indeed the same solution. Studying the optimal
portfolio decomposition given by the portfolio weights x as the level of model ambiguity κ

increases, we expect to find that portfolio diversification becomes optimal. Indeed, this is
confirmed by the right plot in Fig. 5, in which we set α = 0.95, λ = 10 and ξ as discussed
in the previous paragraph and plot the optimal portfolio decomposition x for different
values of κ . For small values of κ , which means that the investor trusts in the empirical dis-
tribution function computed from the observed returns, the right plot in Fig. 5 indicates that
investing more than half of the capital into the S&P 500 is optimal. This fraction decreases
to 1/6 as the level κ of model ambiguity increases and stands in contrast to the left plot of
Fig. 5, which illustrates the optimal portfolio decomposition under dependence uncertainty.
Here, we assume that the empirical marginal distribution functions indeed provide an accu-
rate model for the marginal returns, whereas the dependence structure is ambiguous and
only known to be within an ε−neighborhood of the empirical copula computed from the
observations. In other words, we consider the maximin problem (14). If ε is close to zero,
we are in the same situation as discussed before when κ ≈ 0. For sufficiently large ε how-
ever, the worst case dependence structure is comonotonicity and portfolio concentration
becomes optimal, as proven in Section 4.2. In our example we find that, as ε increases, more

7Note that the FX-risk is neglected in this study.



G. Ch. Pflug, M. Pohl

10-5 10-4 10-3 10-2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10-410-310-210-1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 In the graph on the right, the optimal portfolio decomposition is shown as a function of the level κ

of model ambiguity. The graph on the left shows an approximation to the optimal portfolio decomposition as
the degree ε of dependence uncertainty increases from right to left

and more capital should be invested into the S&P 500, which is in our example the best
performing asset. It should be mentioned that we have used the heuristic algorithm presented
in Section 4.3 and Appendix A to generate the left graph in Fig. 5. In fact, this graph displays
the portfolio weights x which are optimal with respect to the feasible lower bound CL in
Eq. 15. The lower bound CL corresponds to the upper bound shown in the left graph of
Fig. 6, which plots the value of the objective function in Eq. 14 as a function of ε. The
absolute difference between the upper and the lower bound of the objective function’s value
is 0.0051 ± 0.0037 when averaged over 20 different values of ε ∈ (10−4, 10−1). Hence,
we conclude that the results of the proposed heuristic algorithm need to treated carefully
when a fixed degree ε of dependence uncertainty is considered. Nevertheless, the heuristic
allows us to determine the structure of the optimal portfolio decomposition as the degree of
dependence uncertainty increases.
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Fig. 6 The value of the objective function corresponding to the portfolio decomposition shown in Fig. 5 are
plotted as a function of the level κ of model ambiguity as well as of the degree ε of dependence uncertainty
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6 Conclusion

Figure 5 sums up the discussion of model ambiguity and dependence uncertainty in this
paper. In the center of the Figure, we can see the optimal portfolio decomposition when
we assume that the returns follow a known distribution P0. Aiming at an investment strat-
egy which is robust with respect to this distributional assumption, we can go into two
different directions. On the one hand, we can assume that the true distribution lies in a
κ−neighborhood of the distribution P0 and optimize the portfolio with respect to the worst
case distribution within the κ−neighborhood. As shown in the right plot of Fig. 5, the
higher the level of model ambiguity κ gets, the more diversified the portfolio becomes. On
the other hand, we might only consider ambiguity with respect to the dependence struc-
ture of the distribution P0 while fixing the marginal distributions. This leads to portfolio
optimization under dependence uncertainty and is shown in the left plot of Fig. 5: The
higher the degree of dependence uncertainty gets, the more concentrated the optimal port-
folio becomes. Although the set-up of these two approaches is very similar as all parametric
assumptions are avoided and the definition of the ambiguity set relies in both cases on the
Wasserstein distance, the implication could not be more dissimilar.
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Appendix

A Bivariate Example

Consider a portfolio consisting of m = 2 assets. Assume that it is known that the return
of asset j is normally distributed with mean μj and variance σ 2

j for j = 1, 2. Hence,

instead of the empirical distribution function F̂n, we now use the normal cdf in the definition
of Ĉn. Moreover, we are given n observations of the two asset returns which allow us to
compute the empirical estimate Ĉn. In accordance with Section 4, we want to allow for the
true dependence structure to be different from the one modeled by Ĉn and make a robust
investment decision in this respect. That is we want to solve problem (14). The following
heuristic allows us to rapidly compute a lower bound CL and an upper bound CU as given
in (15), which translates into bounds for problem (14):

In the following example, we set the parameter values μ1 = 1%, μ2 = 0.2%, σ 2
1 =

2%, σ 2
2 = 0.5%, α = 0.8 and λ = 10 as well as U0 resp. Ĉn as shown in Fig. 3. Notice

that the exact solution can be computed by enumeration, which is feasible only due to
the small values of m and n. Figure 7 compares the optimal portfolio weights as well as
the optimal objective value of the maximin problem (14) to the bounds computed with
algorithm 1. As it can be seen the investment decision implied by the upper and lower
bound might differ significantly from the optimal one for fixed ε. The reason for this
observation is shown in Fig. 8, where we fix ε = 0.003 and plot the worst case copula
C� = argmax

C∈ Cε,n(Ĉn)
AV@Rα

(−x
ξC
)
in comparison to the boundsCL andCU . Figure 8

shows that for this particular value of ε the worst case copula does not concentrate on the
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Fig. 7 These plots compare the performance of the proposed heuristic method to the exact solution. The
upper panel shows the optimal weight of the first asset in the portfolio as a function of ε. The lower panel
shows the corresponding value of the objective function (14) as a function of ε
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Fig. 8 The support points of the initial copula Ĉn from Fig. 3 are compared with those of the modified
copulas CL and CU , which are computed by Algorithm 1, and to those of the “true” worst case copula C�

for fixed ε = 0.003
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Algorithm 1: Heuristic for a bivariate empirical copula

INPUT:

U0 . . . n × 2 matrix of support points Ui,j = Fj (ξi,j ) for i = 1, . . . , n, j = 1, 2 of Ĉn.
ε . . . bound for the Wasserstein distance dW (·, ·).
α . . . confidence level of the AV@R.

OUTPUT:

UL . . . n × 2 matrix of support points of the lower bound CL.
UU . . . n × 2 matrix of support points of the upper bound CU .

UNEW = U0 ;
for l ← 1 to �(1 − α)m� do

Find i1 and i2 s.t. UNEW(i1, 1) = UNEW(i2, 2) = l/(n + 1) ;
UNEW(i1, 1) = UNEW(i2, 1) ;
UNEW(i2, 1) = l/(n + 1) ;
if dW (UNEW, U0) > ε then

UL = UOLD;
UU = UNEW;
Break

end
UOLD = UNEW ;

end

main diagonal in the lower tail, but CL and CU do so by construction. Hence, CL and CU

differ significantly from C� and so do the investment decision implied by these copulas.
Nevertheless, it should be clear that the bounds become better for larger n.

B Minimaxity and Saddle Points

Let f (x, y) be a function defined on X×Y, where X and Y are compact topological spaces.
We call the pair (x+, y+) a saddle point of f, if

f (x+, y) ≤ f (x+, y+) ≤ f (x, y+),

for x ∈ X, y ∈ Y. Assume that x �→ f (x, y) is lower semicontinuous for every y and y �→
f (x, y) is upper semicontinuous for every x. Let x∗ be a minimizer of x �→ maxy f (x, y)

and let y∗ be a maximizer of y �→ f (x∗, y). We say that (x∗, y∗) is a solution of the
minimax problem. Notice that (x∗, y∗) does not need to be saddle point. Indeed, let X =
{x∗, x} and Y = {y∗, y} and f (x∗, y∗) = 2, f (x∗, y) = 1, f (x, y∗) = 1, f (x, y) = 3.
Then (x∗, y∗) is a solution of the minimax problem, but not a saddle point. On the other
hand, if (x+, y+) is a saddle point, then it is a solution. Suppose the contrary, then (x+, y+)

is a saddle point, but not a solution and (x∗, y∗) is a solution. Let a = f (x∗, y∗), b =
f (x+, y∗), c = f (x∗, y+), d = f (x+, y+). By the saddle point property of (x+, y+),

b ≤ d ≤ c,

and by the optimality of (x∗, y∗)
c ≤ a < d.
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This contradiction proves the assertion. We say that a Minimax Theorem holds, if

min
x∈Xmax

y∈Y
f (x, y) = max

y∈Y
min
x∈X f (x, y).

Notice that the existence of a saddle point (x+, y+) implies the validity of a Minimax
Theorem: Notice first that

min
x∈Xmax

y∈Y
f (x, y) ≥ max

y∈Y
min
x∈X f (x, y),

naturally holds in any case. Thus it is sufficient to prove the reverse inequality. By the saddle
point property of (x+, y+)

min
x∈Xmax

y∈Y
f (x, y) ≤ max

y∈Y
f (x+, y) = f (x+, y+) = min

x∈X f (x, y+) ≤ max
y∈Y

min
x∈X f (x, y).

However, a one-to-one relation between saddle points and solutions of the minimax problem
can only be established under additional assumptions. We cite here Sion’s famous Minimax
Theorem.

Theorem 1 Suppose that f is quasi convex-concave on a topological space X × Y, such
that x �→ f (x, y) is lower semicontinuous for every y ∈ Y and y �→ f (x, y) is upper
semicontinuous for every x ∈ X. If X is compact, then

min
x∈X sup

y∈Y
f (x, y) = sup

y∈Y
min
x∈X f (x, y).

If Y is compact, then
inf
x∈Xmax

y∈Y
f (x, y) = max

y∈Y
inf
x∈X f (x, y).

If both are compact, then

min
x∈Xmax

y∈Y
f (x, y) = max

y∈Y
min
x∈X f (x, y).

Notice that under the assumptions of this Theorem, every solution must be a saddle point.
If x∗ is a solution of the minimax problem and if y∗ ∈ argmaxyf (x∗, y), then

f (x∗, y) ≤ f (x∗, y∗),

for all y ∈ Y. Moreover, since f (x∗, y∗) = minx∈Xmaxy∈Y f (x, y) =
maxy∈Yminx∈X f (x, y),

f (x∗, y∗) = min
x∈X f (x, y∗) ≤ f (x, y∗),

for all x ∈ X, that is (x∗, y∗) is a saddle point. In our application, Y is a subset of Borel
probability measures on R

m endowed with the weak topology. If Y is a Wasserstein ball,
then it is weakly compact (see below). X is the simplex of nonnegative portfolio weights
and also compact. Thus a saddlepoint theorem holds.

Proposition 2 Let P0 be a Borel probability measure on Rm. Then closed Wasserstein balls
with center P0 are weakly compact.

Proof Let P = {P : dW (P, P0) ≤ η} be a Wasserstein ball with center P0. Recall Pro-
horov’s Theorem: If a set of probability measures on a Polish space is weakly closed and
tight, it is weakly compact. Closed Wasserstein balls are weakly closed and we have to
prove the (uniform) tightness of such a ball, that is: for every ε there is a compact set K
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such that P(K) ≥ 1 − 2ε for all P ∈ P . Since P0 is Borel, there is a compact set K ′ such
that P0(K

′) ≥ 1 − ε. Let

h(x) =
{
1 x ∈ K ′

max
(
1 − ε

η
· d(x,K ′), 0

)
x /∈ K ′ .

Notice that h is Lipschitz with Lipschitz constant ε/η and therefore∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dP0(x)

∣∣∣∣ ≤ ε

η
d(P, P0) ≤ ε.

Let K = {
x : d(x,K ′) ≤ ε/η

}
. Then K is compact and

P(K) ≥
∫

h(x) dP (x) ≥
∫

h(x) dP0(x) −
∣∣∣∣
∫

h(x) dP (x) −
∫

h(x) dP0(x)

∣∣∣∣ ≥ 1− 2ε,

for all P ∈ P .

Remark 1 With the same argument one sees that closed Wasserstein balls of copulas are
weakly compact, since the set of all probability measures on [0, 1]n with uniform marginals
is weakly closed and the intersection of a weakly closed and a weakly compact set is weakly
compact.
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