Zur Astromineralogie zirkumstellaren Oxidstaubs

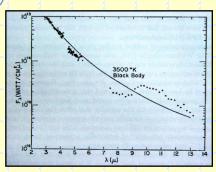
Defensio von Mag. rer. nat. Dr. phil. Thomas Posch

Institut für Astronomie
Universität Wien
13. Dezember 2004

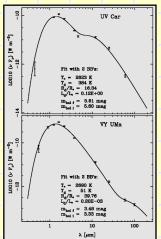
I. Ein hochgradig unterbestimmtes Problem
II. Komplementärinformationen
III. Verwendete Methoden
IV. Ausgewählte Ergebnisse
V. Zukunftsperspektiven

Wo begegnet uns kosmischer Staub?

- Auf der Erde: 100-1000t Staub "regnen" täglich auf die Erde herab (speziell am 13.12.2004)
- Interplanetarer Staub: bedingt Zodiakallicht
- Interstellarer Staub: Im visuellen Spektralbereich v.a. extingierend
- Zirkumstellarer Staub: Ursprung der übrigen Staubpopulationen

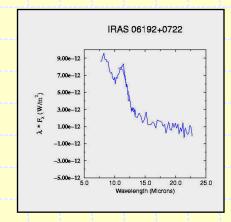

< Zodiakallicht

< Extinktion des interstellaren Staubes Astromineralogie auf der Basis von IR-Spektroskopie:

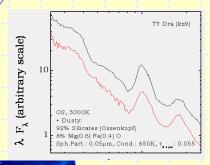

I. Ein hochgradig unterbestimmtes Problem

I. Ein hochgradig unterbestimmtes Problem

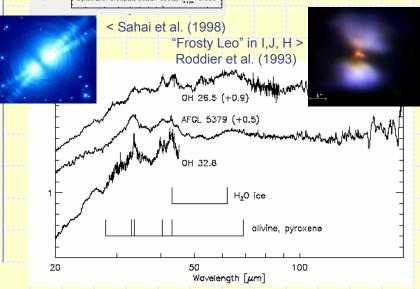
~1968: Erste IR-Spektren zirkumstellarer Hüllen Informationsgehalt gering



Noch in frühen 1990ern: Weite Bereiche des IR nur mittels Breitband-Photometrie erfaßt

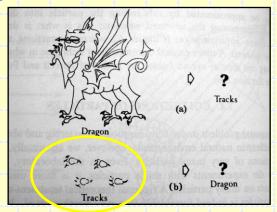

UV Car, VY UMa Kerschbaum (1993)

Ausnahme: 8-23µm-Bereich (IRAS)


BN Mon aus IRAS Archiv NB: 11µm SiC-Bande

I. Ein hochgradig unterbestimmtes Problem

Beobachtungsseitiger Ausgangspunkt dieser Arbeit:


- ISO-Spektren
- Neue Ära der Astromineralogie

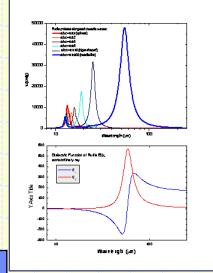
- ⊕ Wichtige Einsicht:
- ∃ Kristalliner Sternstaub (Silikate, Karbonate, Karbide)
- ⊗ Lücke zu Beginn m. Projekts: IR-Eigenschaften astrophysikalisch relevanter Oxide (amorph wie auch kristallin)

Sylvester et al. (1999)

Warum eigentlich "unterbestimmt"?

Bohren & Huffman (1983)

Bohren & Huffman (1983) bzgl. Kleinteilchenspektren: "Find a dragon from its tracks" tracks = SED kleiner fester Teilchen


dragon = Sternstaub (oder sonstige **Population kleiner** Festkörperpartikel)

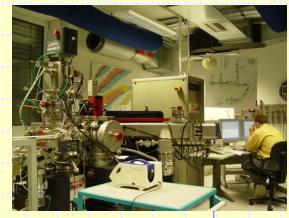
Zugrundeliegendes Problem:

Große Zahl von Parametern bestimmt Spektrum des Systems Stern+Staubhülle:

z.B. T(r), ρ (r), χ (r), Gitterstruktur, Partikelform, Partikelgröße, Bildung v. Kern-Mantel-Teilchen

Was tun, wenn allein schon TiO₂ so unterschiedliche Banden erzeugen kann?

TiO₂, dielektr. Funktion & **Emissivität**

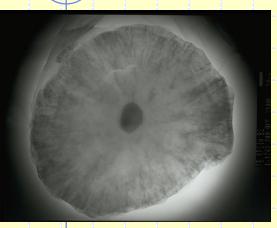

II. Komplementärinformationen

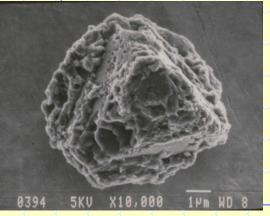
(= nicht-spektroskopische Informationen über die Natur kosmischer Staubteilchen)

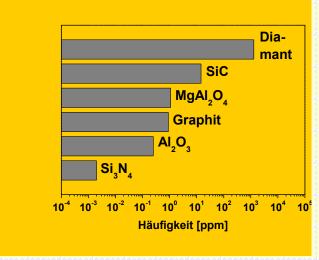
II. Komplementärinformationen: Übersicht

Wichtige Komplementärinformationen über Sternstaub liefern:

- *A) Untersuchungen präsolarer Körner (<u>PSGs</u>) in Meteoriten Neue Ära mit NanoSIMS
- B) Element-Abreicherungsraten
 Welche Elemente fehlen im interstellaren Gas?
- C) Kosmische Elementhäufigkeiten
- *D) Vorhergesagte Kondensationssequenzen




NanoSIMS, MPI f. Chemie, Mainz, 22. 11. 04



^{*}Auf nachfolgenden Folien näher erläutert

II. Komplementärinformationen aus präsolaren Teilchen

Hoppe (2004)

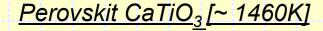
^ Relative Häufigkeiten von PSG-Spezies

TiC in Graphit
< β-SiC-Tetraeder

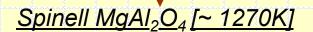
Basisinformationen aus PSGs:

- Sternstaub-Mineralogie
- Gitterstrukturen
- Teilchengrößen
- Teilchenformen

II. Information aus Staubkondensationssequenzen


Ebel & Grossman (2000):
Gleichgewichts-Rechungen für Staubkondensation
(Minimierung der Gibbs-Energie) ⇒ Sequenz (p-abhängig):

Korund α-Al₂O₃ [~ 1570K bei 10⁻⁶ bar]



Hibonit CaAI₁₂O₁₉ [~ 1480K]

Grossit CaAI₄O₇ [~ 1360K]

(Silikate, teils im <1000K-Bereich)

Hohe Kond.temperaturen

⇒ besonders relevant
für relativ heiße
staubbildende
Objekte!

III. Verwendete Methoden

III. Verwendete Methoden

Physikalische u. mathematische Theorien mit besonderer Relevanz für Astromineralogie

Klassische Theorie der optischen Konstanten nach H.A. Lorentz u.a.

(Gruppentheorie)

Mie-Theorie

(Erweiterungen der Mie-Theorie)

Strahlungstransporttheorie

(Kondensationstheorie)

Ziel:

Verständnis des Zusammenhangs: Labormeßgrößen ↔ astronomische Meßgrößen

III. Verwendete Methoden

Voraussetzungen:

- ✓ Laboranaloga präpariert
- ✓ Analytik durchgeführt

<u>Labor-Messungen und Rechnungen:</u>

1a) Messe Reflektivität $R(n,k,\lambda) \Rightarrow n + i k(\lambda)$

1b) Messe Transmission $T(n,k,\lambda,F) \Rightarrow k(\lambda)$

2) Berechne $Q_{ahs}(n,k,a,F,\lambda)$

Astronomische Beobachtungen liefern im einfachsten Falle:

 $\Sigma_{j} \mathbf{Q'}_{abs, j}(\mathbf{n'}, \mathbf{k'}, \mathbf{a'}, \mathbf{F'}, \lambda) * \mathbf{B}_{\lambda}(<\mathbf{T}_{d}>)$

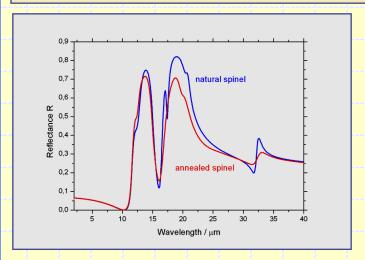
[genauer: Resultat von STR,

in welche Q_{abs, i} eingehen]

 \Rightarrow ermittle Q'_{abs. i} (n',k',a',F', λ)

a ... Teilchenhalbmesser B_{λ} ... Planck-Funktion $n(\lambda)$, $k(\lambda)$... optische Konstanten F ... Teilchenform

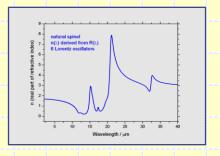
 $Q_{abs}(n,k,a,\lambda)$:

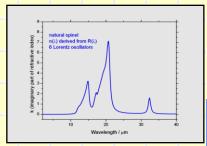

Absorptionseffizienzfaktor

<T_d>: mittlere Staubtemperatur

Der Vergleich macht uns (un)sicher

III. Verwendete Methoden: Laborspektroskopie

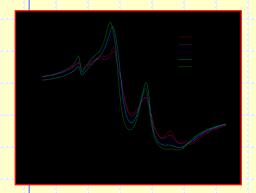

Bsp. eines gemessenen Reflexionsspektrums eines Mg-Al-Spinells:



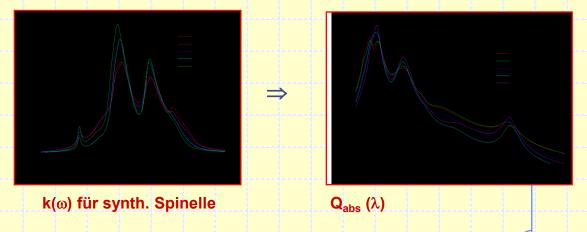
Hitzebehandlung (1h @ 1223K) verändert das Kristallgitter von Spinell (partieller Platztausch Al ↔ Mg)

R =
$$[(n-1)^2+k^2] / [(n+1)^2+k^2]$$

(n +i k)² = ϵ

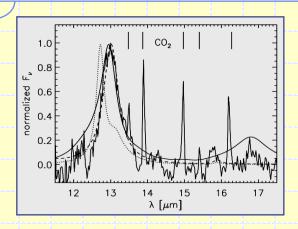

$$\varepsilon = \varepsilon_0 + \sum_j \Omega_j^2 / (\omega_j^2 - \omega^2 - i \gamma_j \omega)$$

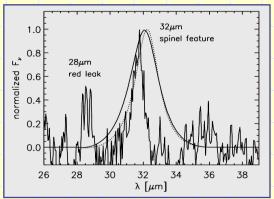
Γ	j	ω _j [1/cm]	Ω _j [1/cm]	γ _j [1/cm]		
Γ	1	803.6	159.7	82.5		
	2	666.6	522.9	31.9		
	3	577.3	132.1	11.5		
ſ	4	492.4	660.2	30.8		
Г	5	478.6	655.5	14.0		
	6	308.1	151.0	6.9		


III. Verwendete Methoden: Berechnung von Absorptions- und Streueffizienzen

Maß für WW kleiner Teilchen mit el.-mag. Strahlung $Q_{abs}(\lambda)$, $Q_{streu}(\lambda)$

- folgen aus Mie-Theorie (unendliche Reihen für $Q_{abs}(\lambda)$ und $Q_{streu}(\lambda)$ für a $\cong \lambda$)
- entscheidend abhängig von Partikelform und Partikelgröße
- $Q_{abs}(\lambda)/a = 8 \pi / \lambda * 6 nk / [(n^2-k^2+2)^2 + 4n^2k^2]$ für sphärische Partikel mit a << λ
- Kugelresonanzen (Fröhlich-Moden) zentriert um k² = 2 (und n → 0)
- (NB: keine notwendige Bedingung, aber, wenn erfüllt, starke Resonanz)




n(ω) für Spinelle mit versch. Mg:Al-Verh.

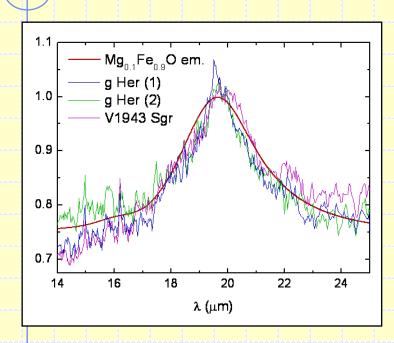
IV. Ausgewählte Ergebnisse

IV. Ausgewählte Ergebnisse (1)

Leitfrage: ∃ Korrelation:

Im Labor gemessesene Oxidbanden

→ Staub-Banden in ISO-Spektren?

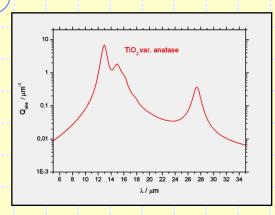

Bsp.1: Emissionbanden bei 13, 17 & 32µm:

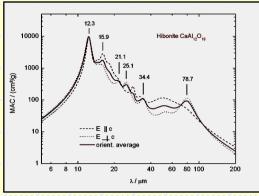
Wahrscheinlichster Urheber:

Spinell (MgAl₂O₄)

13µm-Bande: lange Zeit α -Al $_2$ O $_3$ zugeschrieben (links oben Linie "...") Sekundärbanden bei 21 und 26µm nicht detektiert

IV. Ausgewählte Ergebnisse (2)




^ ISO-SWS-Staubresiduum von g Her u. V1943 Sgr; Staubemission von Mg_{0.1}Fe_{0.9}O

Die 19.5µm-Emissionsbande:

- Erste Hinweise durch IRAS
- Hinreichend aufgelöst erst mit ISO (Posch et al. 2002)
- Beobachtet v.a. in Spektren semiregulärer Veränderlicher
- Kondensationstheorie unterstützt spektroskopische Evidenz für
 Mg_xFe_{1-x}O (mit x ≅ 0.1)

IV. Ausgewählte Ergebnisse (3)

^ Posch et al. 2003; Mutschke et al. 2002

Für zahlreiche Oxidspezies: Optische Konstanten im Labor gemessen, aber keine eindeutige astron. Identifikation

- TiO₂: Kondensationskeim in O-reichen CSEs.
- $n(\lambda) \& k(\lambda)$ aus $R(\lambda)$ abgeleitet
- CaAl₁₂O₁₉ u.a. Ca-Al-Oxide: viele IR-Banden zw. 12 und >70µm. Korrelation mit astronomischen Spektren unklar
- Ähnlich: Ca-Ti-, Mg-Ti-, Fe-Ti-Oxide

IV. Ergebnisübersicht: Abgeleitete IR-Eigenschaften

<u> </u>	<u> </u>		1 1
 <u>Staubspezies</u>	Symmetrie	Qabs-Maxima [µm]	Daten
nat. TiO ₂ -Rutil	tetragonal	13.4, 23, 27.5	C-OC
 nat. TiO ₂ -Anatas	tetragonal	13.0, 15.0, 27.5	R-OC
nat. TiO ₂ -Brookit	orthorhomb.	13.5, 18.5, 21.9, 26.9,	R-OC
		31.1, 33, 44.9, 53.3, 57.5	
Synth. Ti ₂ O ₃	trigonal	18.6, 20, 25.5, 28, 36	C-OC
 met CoTiO	a utla a ula a ua la	444 040 000 007 007 000	D 00
nat. CaTiO ₃	orthorhomb.	14.1, 21.0, 23.8, 32.7, 33.5, 62.3	R-OC
 synth. MgTiO ₃	trigonal	13.5, 17.2, 21.0, 23.7, 28.0, 35.2	T
synth. MgTi ₂ O ₅	orthorhomb.	15.4, 19.4, 24.9, 27.7, 33.2	T
 synth. Mg ₂ TiO ₄	kubisch	16.2, 20.9, 22.7, 27.4, 35.2	Т
 nat. CaAl ₁₂ O ₁₉	tetragonal	13.3, 16.6, 25.4, 34.9, 79.8	R-OC
synth. CaAl ₄ O ₇	monoklin	10.9, 12.3, 13.4, 14.7,	Т
 4 /		15.2, 15.6, 17.4, 18.6,	
		22.6, 23.7, 25.7, 27.9,	
		30.7, 32.0, 34.9, 39.1,	
		44.0, 48.8, 52.8, 63.5, 73.6	
nat. Mg _{1.02} Al _{1.93} O ₄	kubisch	13.3, 16.8, 17.5, 32.2	R-OC
 ann. Mg _{1.02} Al _{1.93} O ₄	kubisch	13.1, 17.0, 32.3	R-OC
synth. Mg _{1.01} Al _{1.99} O ₄	kubisch	13.0, 16.9, 32.0	R-OC
 synth. Mg _{0.94} Al _{2.04} O ₄	kubisch	13.0, 16.8, 32.3	R-OC
synth. Mg _{0.82} Al _{2.12} O ₄	kubisch	13.1, 16.8, 32.0	R-OC
 synth. Mg _{0.73} Al _{2.17} O ₄	kubisch	12.1, 13.2, 16.8, 31.8	R-OC
synth. Mg _{0.53} Al _{2.31} O ₄	kubisch	12.0, 13.3, 16.8, 31.6	R-OC
 synth. Mg _{0.43} Al _{2.38} O ₄	kubisch	11.9, 13.3, 16.8, 30.7	R-OC
avently FaO	landa la ala	40.0	0.00
synth. FeO	kubisch	19.9	C-OC
synth. Mg _{0.1} Fe _{0.9} O	kubisch	19.6	C-OC

C-OC ... Berechnung von Q_{abs} aus existierenden optischen Konstanten R-OC ... Bestimmung der optischen Konstanten aus Reflexionsmessungen T ... Transmissionsmessungen (liefern keine Vollständige Information über optische Konst.)

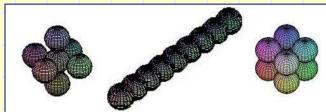
V. Zukunftsperspektiven

V. Zukunftsperspektiven (2005/06)

a) Messungen im Labor

- Fortsetzung klassischer IR-Spektroskopie (u.a. an Karbonaten)
- Besondere Berücksichtigung des FIR im Hinblick auf Herschel-PACS

b) Astronomische Beobachtungsdaten


 Gewinnung neuer Beobachtungsdaten (Spitzer; VLT-MIDI; VLT-VISIR)

Calcit CaCO₃

c) Rechnungen

- Berechnung der Absorptionseffizienz von Clustern sphärischer
 - Teilchen (mit A. C. Andersen, H. Mutschke)
- Verbesserte STR-Modelle (mit W. Nowotny, S. Höfner)

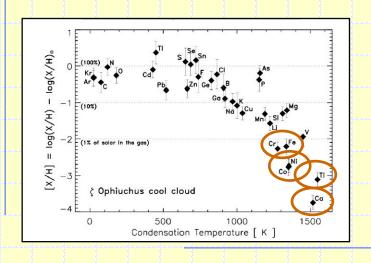
Cluster sphärischer Partikel

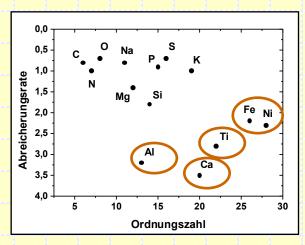
Dank für vielfache Unterstützung 1998-2004 an:

Anton Beran (IMP) Gabriele Born (AIU) **Ernst A. Dorfi (IfA) Johann Dorschner (AIU)** Dirk Fabian (AIU) **Vera Hammer (NHMW)** Ingrid Hodouš (IfA) Josef Hron (IfA) Cornelia Jäger (AIU) **Gero Kurat (NHMW) Thomas Lebzelter (IfA)** Hans-Michael Maitzen (IfA) **Harald Mutschke (AIU)** Wilhelm Nöbauer (IfA) Walter Nowotny (IfA) **Roland Ottensamer (IfA) Hannes Richter (IfA)** Jürgen Weiprecht (AIU)

bmvit

IV. Ergebnisse: Thesen (1)


- 1. Semireguläre Veränderliche sind anteilsmäßig reicher an oxidischem Staub als Mira-Veränderliche.
- 2. Zu den bedeutendsten oxidischen Sternstaubkomponenten gehören Al-, Fe- und Mg-Oxide.
- 3. Aluminiumoxid liegt in zirkumstellaren Hüllen vorwiegend in der Form von amorphem Al₂O₃ vor.
- Urheber der 13µm-Emissionsbande in zirkumstellaren Hüllen von AGB-Sternen ist eine Al-O-Streckschwingung, und zwar in MgAl₂O₄, nicht in α-Al₂O₃.
- 5. Spinell-Partikel produzieren weiters Emissionsbanden bei 16.8 und 32µm. An diesen Positionen werden features in den Spektren zirkumstellarer Hüllen beobachtet.

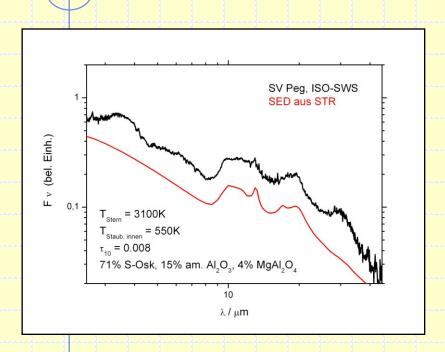

IV. Ergebnisse: Thesen (2)

- 6. Zahlreiche Quellen der 13µm-Emission zeigen eine starke Emissionsbande bei 19.5µm. Auch diese wird von einem Metalloxid hervorgerufen, und zwar von (Mg,Fe)O.
- 7. Titanoxide scheiden als Urheber der 13- und 19.5µm-Banden aus. (Sie dienen aber wohl als Kondensationskeime in sauerstoffreichen zirkumstellaren Hüllen.)
- 8. Rechnerisch ermittelte Kondensationssequenzen und Untersuchungen an präsolaren Teilchen (PSGs) sind nötig, um die Vieldeutigkeit spektroskopischer Befunde zu reduzieren.
- Neuere PSG-Studien unterstützen einige der Hauptergebnisse der vorliegenden Arbeit.
- 10. Convergentia astronomiae et mineralogiae non negari potest.

Erg. zu II.: Information aus Element-Abreicherungsraten

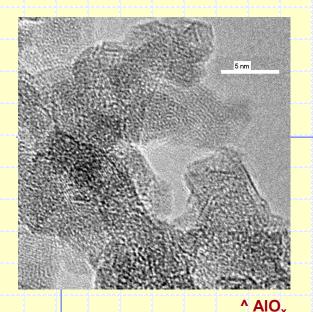
Interstellares Gas: Einige Elemente stark unterhäufig (im Verhältnis zu solaren Werten)
Um Faktoren > 100 unterhäufig:
Ca, Ti, Al,
Co, Ni, Cr, Fe

Abreicherungsrate als f(Z) (nach Salpeter 1977)

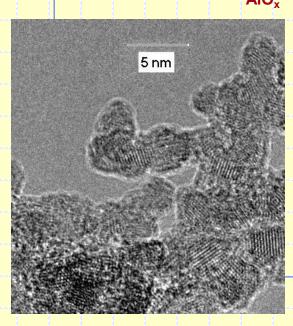

Warum die Unterhäufigkeit?

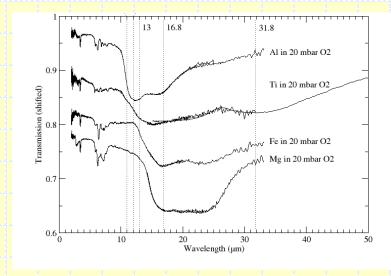
Phasenübergang gasförmig → fest
(besonders für Ca, Ti, Al, Fe, ...

⇒ Spektroskopiere deren Verbindungen!)


Abreicherungsrate als Funktion der Kondensationstemperatur (Palme & Jones 2004)

Erg. zu III.: Beobachtungen & Modellrechnungen


^ SV Peg ISO-SWS-Spektrum & STR-Modell (DUSTY)


- ISO-Beobachtungen: durchgehende λ-Abdeckung von 2 bis 45 (200) μm
- Beobachtete SED rekonstruierbar mit STR-Rechnungen
- Benötige: Datenbank optischer Konstanten von Staubspezies Modellspektren f. Photosphäre
- Limitationen: Unvollständigkeit der Datenbanken; S/N beobachteter Spektren

Erg. zu V.: Spektroskopie nach Kondensation aus der Gasphase

Idee: Statt Berechnung von C_{abs} aus den makroskopischen optischen Konstanten: Messung der Absorptivität von frisch kondensierten Partikeln. Partikelgrößen im Sub-µm-Bereich.

< TiO_x

^ IR-Spektren von Al-, Ti-, Fe-, Mg-Oxiden aus Laser-Ablation