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What are Cosmic Rays?

high energy particles

primary vs. secondary

components

◦ charged component
◦ neutrino component
◦ photon component
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Which particles occur?

98% fully ionized nuclei

- 87% protons (H nuclei)
- 12% α-particles (He nuclei)
- 1% heavier nuclei

2% electrons

vs. solar system abundances (♦)

→ even-odd-effect
→ peaks for C, N, O and Fe
9 Li, Be, B and Sc, Ti, V, Mn

low (•) vs. high (◦) energy data
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What about their energy?

same distribution
for different nuclei

overall spectrum

◦ solar modulation
◦ GZK-cutoff

structures

◦ knee (∼ 1015eV )

◦ ankle (∼ 5.1018eV )

N(E ) ∝ E−γ
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Magnetic Mirror

How do e− and ions move in uniform magnetostatic field?

pitch angle: α = tan−1
(

v⊥
v‖

)

equation of motion: m dv
dt = q (v × B)

solution for B = Bêz

x = ±rg sin (ωg t) + x0

y = rgcos (ωg t) + y0

with gyrofrequency and gyroradius

ωg = |q|B
m rg = v⊥

|ωg | = mv⊥
|q|B

guiding center (x0, y0) moves with v‖
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What happens if E and B are arbitrary?

E× B drift: vE = E×B
B2

polarisation drift: vP = m
qB2

dE⊥
dt

curvature drift: vR =
mv2
‖

q
RC×B
R2

CB2

gradient drift: vO =
mv2
⊥

2qB3 (B× OB)

gravitational force drift: vG = m
q

g×B
B2
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Which quantities are conserved?

magnetic moment: µ =
mv2
⊥

2B

magnetic flux: Φµ = 2πm
q2 µ

violation of invariance

ωE ,B > ωg

L∇E ,B < rg

Birgit Trappl Cosmic Rays 8 of 20



Properties of Cosmic Rays
Dynamics of Charged Particles in Electromagnetic Fields

Acceleration Mechanisms
Applications to the Energy Spectrum

Gyration
Drifts
Adiabatic Invariants
Magnetic Mirror

Which quantities are conserved?

magnetic moment: µ =
mv2
⊥

2B

magnetic flux: Φµ = 2πm
q2 µ

violation of invariance

ωE ,B > ωg

L∇E ,B < rg

Birgit Trappl Cosmic Rays 8 of 20



Properties of Cosmic Rays
Dynamics of Charged Particles in Electromagnetic Fields

Acceleration Mechanisms
Applications to the Energy Spectrum

Gyration
Drifts
Adiabatic Invariants
Magnetic Mirror

What happens if B ‖ ∇B for stationary B?

invariant magnetic moment: µ =
mv2
⊥

2B = mv2sin2α
2B = const.

particle energy conserved: mv2

2 = m
2 (v2
‖ + v2

⊥)⇒
mv2
‖

2 = mv2

2 − µB
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Where is the mirror point?

mirror condition (v‖ = 0):
mv2
‖

2 = mv2

2 − µB ⇒ mv2

2 = µB

loss cone condition: sin(α∗) =
(

Bmin
Bmax

) 1
2

scatters back (α > α∗) or escapes (α < α∗)
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Where do particles get their energy from?

top-down-scenarios - supermassive particle decay

bottom-up-scenarios - acceleration processes

possible energy sources - classification:

◦ dynamic - graviational potential: transfer of potential energy
◦ hydrodynamic - kinetic energy: acceleration via collisions or rotation
◦ electromagnetic - em. potential: energy gain per coulomb force

process - classification: direct vs. stochastic

Birgit Trappl Cosmic Rays 11 of 20



Properties of Cosmic Rays
Dynamics of Charged Particles in Electromagnetic Fields

Acceleration Mechanisms
Applications to the Energy Spectrum

Free Energy Sources & Classification
Direct Electrostatic Acceleration
Stochastic Acceleration

Where do particles get their energy from?

top-down-scenarios - supermassive particle decay

bottom-up-scenarios - acceleration processes

possible energy sources - classification:

◦ dynamic - graviational potential: transfer of potential energy
◦ hydrodynamic - kinetic energy: acceleration via collisions or rotation
◦ electromagnetic - em. potential: energy gain per coulomb force

process - classification: direct vs. stochastic

Birgit Trappl Cosmic Rays 11 of 20



Properties of Cosmic Rays
Dynamics of Charged Particles in Electromagnetic Fields

Acceleration Mechanisms
Applications to the Energy Spectrum

Free Energy Sources & Classification
Direct Electrostatic Acceleration
Stochastic Acceleration

How do particles speed up via electric fields?

no electrostatic fields

⇒ non-stationary electric fields

⇒ time-varying magnetic fields
(→ induction)

betatron or cyclotron effect

∂B

∂t
= −∇× E

Φ =

∫
B · dA = BπR2

−dΦ

dt
=

∮
E · ds =: Uind

∆E = −|q|Uind = eπR2 dB
dt
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What is the Fermi mechanism?

collisions with
interstellar clouds

elastic scattering
at magnetic mirrors
(pitch angle scattering)

net energy gain
∆Ehead−on = 1

2
m(v + u)2 − 1

2
mv2 > 0

∆Efollowing = 1
2
m(v − u)2 − 1

2
mv2 < 0

∆E = ∆Eheadon + ∆Efollowing = mu2 > 0
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What is shock front acceleration?

collisions with shock fronts

assumptions:
strong shock & monoatomic gas

diffusion up- & downstream

only head-on ⇒ energy gain
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How much energy do particles gain?

fractional energy gain: ∆E = ξE

En = E0(1 + ξ)n ⇒ n = ln
(

E
E0

)
/ln(1 + ξ)

⇒ N(≥ E ) ∝
∞∑

m=n
(1− Pesc)m = (1−Pesc )n

Pesc
= 1

Pesc

(
E
E0

)−γ
with γ = ln

(
1

1−Pesc

)
/ln(1 + ξ) ≈ Pesc

ξ

Fermi mechanism - 2nd order Fermi mechanism
ξ ∼ 4

3

(
ui
c

)2 ⇒ γ � 2

Shock acceleration - 1st order Fermi mechanism
ξ = 4

3

(
u
c

)
⇒ γ ' 2

√
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Which objects are known accelerators?

Solar Origin:
(E < 109eV )

◦ Sunspots
◦ Solar Wind
◦ Solar Flares and

Coronal Mass Ejections

Galactic Origin I:
(109eV < E < 1015eV )

◦ Interstellar Clouds
◦ Shock Fronts of

Supernova Explosions
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What is a Hillas Plot?

Hillas condition

(
B
G

) (
R
pc

)
> 2

βsc .q

(
E

1020eV

)
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Which objects are possible accelerators?

Galacic Origin II:
(1015 < E < 1019eV )

◦ SN Remnants - Pulsars
◦ Binaries
◦ Galactic Wind

Extragalactic Origin:
(E > 1019eV )

◦ Structure Formation Shocks
◦ Clusters of Galaxies
◦ Radio Galaxies
◦ Active Galactic Nuclei
◦ Gamma-Ray Burts
◦ Colliding Galaxies
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Do particles lose energy whilst propagation?

Insterstellar and Intergalactic Medium

Cosmic Photon Fields

Cosmic Magnetic Fields

Interactions of Cosmic Ray Electrons
◦ synchrotron radiation in cosmic magnetic fields
◦ inverse Compton scattering of ambient photon gases
◦ triplet pair production in ambient photon gases
◦ nonthermal electron bremsstrahlung in ambient matter fields
◦ ionization and excitation of atoms and molecules in ambient matter fields

◦ Coulomb interactions with ionized gas

Interactions of Cosmic Ray Nuclei
◦ pair production
◦ photo-production of hadrons
◦ photo-desintegration of the nucleus
◦ pion production
◦ excitation of nuclei

◦ Coulomb and ionization interactions
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