Habitability of Exoplanets

Magdalena Brunner 2010

Hintergrundbild: http://www.xe-media.ch/

Overview

The detection of exoplanets

- Definition of life and habitability
- Definition of the habitable zone (HZ)
 - Earth-system-model
 - Geodynamic model
 - Dynamic habitability
- The HZ in the solar system & around other main sequence stars

The detection of exoplanets

Direct imaging

planets larger than Jupiter, hot, great distance to parent star

Transits

planetary orbits with right alignment

Astrometry

large planetary orbits, long observation time

Radial velocity

high S/N ratio \rightarrow nearby stars

Gravitational microlensing

Definition of life and habitability

Life:

>self-sustained system of organic molecules in liquid water immersed in a source of free energy

- \rightarrow <u>liquid water</u>
- Habitability:

Conditions under which life - as we know it can emerge and exist.

Definition of the habitable zone (HZ)

 >>The HZ around a given central star is defined as the region within an earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. <<

(S. Franck et al., 2001, Planetary habitability: is Earth commonplace in the Milky Way?)

- Circumstellar HZ and galactic HZ
- Criteria for liquid water:
 - →temperature

Distance to central star, planetary size, biological and geological evolution of the planet, atmosphere, obliquity, eccentricity

Earth-system-model

The model consists of the components:

- solid earth,
- hydrosphere,
- atmosphere,
- and biosphere.
- It couples:
 - the increasing solar luminosity,
 - the silicate-rock-weathering rate,
 - and the global energy balance
- to estimate:
 - the partial pressure of atmospheric and soil carbon dioxide,
 - the mean global surface temperature,
 - and the biological productivity as a function of time.

Earth-system-model

Radiation balance equation:

$$\frac{L}{4\pi R^2} \left[1 - \alpha \left(T_{surf}, P_{atm} \right) \right] = 4I_R \left(T_{surf}, P_{atm} \right)$$

α...albedo

 P_{atm} ... CO_2 concentration in atmosphere I_R ... outgoing infrared flux Stefan Boltzmann: $I_R = \sigma T^4_{bbr}$ $T_{bbr} = T_{surf} - \Delta T_{greenhouse}(P_{atm}, T_{surf})$

Increasing insolation due to increasing H-burning rate! → Increasing temperature

The global carbon cycle

The global carbon cycle

 Main process for the regulation of the atmospheric composition and climate with respect to increasing insolation.

Silicate-rock-weathering:

Weathering plants transport CO_2 from atmosphere to soil \rightarrow silicates transform CO_2 \rightarrow weaker greenhouse effect \rightarrow self regulation

Silicate-rock-weathering

Main sink in for atmospheric carbon dioxide

Chemical reactions:
CO₂+CaSiO₃ → CaCO₃+SiO₂
CO₂+MgSiO₃ → MgCO₃+SiO₂

Il Higher mean global temperature → increase in weathering

Global mean weathering rate

$$\frac{F_{Wr}}{F_{Wr,0}} = \left(\frac{a_{H^{+}}}{a_{H^{+},0}}\right)^{0.5} exp\left(\frac{T_{surf} - T_{surf,0}}{13.7 \text{ K}}\right)$$

- Describes the climate in respect to the surface temperature and CO₂ concentration in atmosphere and soil
- aH⁺ ... activity of H⁺ in fresh soil water, depending on P_{soil} and T_{surf}; outlines the role of CO₂ concentration in the soil

Bioproductivity

Amount of produced biomass

$$\frac{\Pi}{\Pi_{\text{max}}} = \Pi_{\text{T}}(\text{T}_{\text{surf}}) \cdot \Pi_{\text{P}}(\text{P}_{\text{atm}}) = \max\left(\left(1 - \left(\frac{\text{T}_{\text{surf}} - 50^{\circ}\text{C}}{50^{\circ}\text{C}}\right)^{2}\right) \left(\frac{\text{P}_{\text{atm}} - \text{P}_{\text{min}}}{\text{P}_{1/2} + (\text{P}_{\text{atm}} - \text{P}_{\text{min}})}\right), 0$$

- $\Pi_{max} = 2\Pi_0$ (assumption)
- $P_{1/2}$ defined by $\Pi_P(P_{1/2} + P_{min}) = 1/2$ for a fixed value $P_{min} = 10^{-5}$ bar
- Maximum productivity for a given P_{atm} at 50°C surface temperature, zero productivity for ≤ 0°C and ≥ 100°C

Evolution of CO₂ concentration

Abbildung 2.9: Ergebnisse der Berechnungen des zeitlichen Verlaufs des atmosphärischen CO₂-Gehalts von Lovelock und Whitfield (1982) und Caldeira und Kasting (1992). Der weiße Korridor bezeichnet den Bereich von Umweltbedingungen, in dem Biomasseproduktion möglich ist, im schraffierten Bereich allerdings nur durch C₄-Pflanzen. (nach Bounama et al. 2004)

Bioproductivity

Abbildung 2.11: Die biologische Produktivität II normalisiert auf den heutigen Wert Π_0 als Funktion der Oberflächentemperatur T_s und des atmosphärischen CO₂-Partialdrucks P_{atm} . (Franck et al. 2001)

Geodynamic model

Balance between CO₂ sink and sources

 $\frac{\partial P_{atm}}{\partial t} = F_{source} - F_{wr} \qquad \frac{F_{source}}{F_{source,0}} = \frac{S}{S_0}$

S.... Spreadingrate

- Weathering only on continental area \rightarrow • $f_{wr}(T_{surf}, P_{atm}) = \frac{f_{sr}}{f_A} =: GFR(t)$ Geophysical Forcing Ratio
- Radiation balance equation \rightarrow

$$f_{wr}(T_{surf}, L, R) = \frac{f_{sr}}{f_A} =: GFR(t)$$

Geodynamic model

Calculating the weathering rate for geological history and planetary future when continental area and spreading rate are known.

Dynamic habitability

Orbital stability:

- Required over a biologically significant time
- Giant planets influence the stability of smaller ones
- Hill radius: $R_H = \left(\frac{m}{3M}\right)^{1/3} a$ m...planet Mass,

M... star mass, a...semimajor axis, e...eccentricity

Boundaries

 $R_{int} = a(1-e) - n_{int}(e)R_H$

for unstable orbits:

$$R_{ext} = a(1+e) - n_{ext}(e)R_H$$

The HZ in the solar system

 $HZ \coloneqq \left\{ R \mid \Pi\left(P_{atm}(R,t), T_{surf}(R,t)\right) > 0 \right\}$

- most conservative case: R= 0.95 AU to 1.37 AU
- least conservative case: R= 0.75 AU to 1.90 AU
- *intermediate case*: R= 0.84 AU to 1.77 AU

(Kasting et al.)

<u>Inner radius</u>: loss of planetary water <u>Outer radius</u>: maximum possible greenhouse heating, CO₂ condensation → albedo

The HZ in the solar system

Abbildung 2.16 Die photosynthetisch-aktive habitable Zone (grüner Abstandsbereich in AE) im Sonnensystem in Abhängigkeit von der Zeit für vier verschiedene Kontinentwachstumsszenarien: a) verspätetes lineares Wachstum, b) episodisches Wachstum (Condie 1990), c) lineares Wachstum, d) konstante Kontinentfläche. Die horizontalen gestrichelten Linien markieren den Abstand der Venus (♀), der Erde (⊕), und des Mars (♂) zur Sonne. Die Ergebnisse basieren auf GFR₁.

Bounama 2007

The HZ around main sequence stars

- Massive stars
 → short time HZ; sudden end of main sequence
- M>2.2 M_{sun} → H burning < 0.8 Gyr; earth-like planet needs up to 0.8 Gyr habitable conditions
- No read giants → 1.1 2.2 M_{sun}
- Only geodynamics between 0.6 and 1.1 M_{sun} → t < t_{max}= 6.5 Gyr
- Tidal locking < 0.6 M_{sun}

Abbildung 2.15: Das Hertzsprung-Russell-Diagramm (Leuchtkraft *L* in Abhängigkeit von der effektiven Temperatur T_{eff}) für Zentralsterne im Massebereich 0,8 bis 2,5 M_s. Es wurde nur die Hauptreihenentwicklung berücksichtigt. Aufeinander folgende Punkte für die massenspezifischen Graphen markieren einen Zeitschritt von 1 Ga. (Franck et al. 2000b)

Fig. 8 Graphs of the width and position of the HZ derived from the geodynamic model for three different stellar masses M (0.8, 1.0, 1.2 M_s). t_{max} is the maximum life span of the biosphere limited by geodynamic effects. τ_{H} indicates the hydrogen burning time on the main sequence limiting the life span of more massive stars

The HZ for a 0.3 M_{sun} star

Statistics

86 exoplanetary systems examined:

- 54 potential dynamic habitable earth like planets
- 20 systems with giant planet in HZ and possibly habitable moon or Trojan planet
- 12 systems without chance for the existence of dynamic habitable planets
- <u>18 systems with better perquisites for life than</u> solar system → principle of mediocrity

References

Habitable Zones in Extrasolar Planetary Systems, Werner von Bloh, Christine Bounama, and Siegfried Franck
Extrasolar Planets: Formation, Detection and Dynamics. Edited by Rudolf Dvorak; WILEY-VCH Verlag;
pages: 257-264, 266-275, 278, 280

Thermische Evolution und Habitabilität erdähnlicher Exoplaneten, *Christine Bounama, 2007, Dissertation Universität Potsdam; pages: 3-4, 6, 20-29, 33-37, 40*

Planetary habitability: is Earth commonplace in the Milky Way?, S. Franck et al., 2001; Naturwissenschaften (Springer Verlag), Volume 88, Number 10; pages: 417-423