
memoxo - browserbased recording of audio and
video messages

Rudolf Hartjes1, Markus Höckner2?

and Christine Strauß1

1 University of Vienna, Department of Business Studies
Brünner Straße 72, 1210 Vienna Austria

2 University of Vienna, Multimedia Information Systems
Liebiggasse 4/3-4, 1010 Vienna Austria
{rudolf.hartjes,markus.hoeckner,

christine.strauss}@univie.ac.at

Abstract. Memoxo is a free web-application that allows users to record,
send or publish audio and video messages straight from their browser.
This paper addresses memoxo’s usage as well as its technical aspects and
application scenarios. Memoxo is based on the Red5 media server and
satisfies the Web Accessibility Standards, which is likely to provide alter-
native means of communication for people with disabilities. Furthermore,
this paper presents memoxo’s detailled core functionalities.

1 Introduction

Developing a web-application is not as simple nowadays as it had been a few
years ago, due to the fact that characteristics such as extensibility, reusabil-
ity, flexibility and reliability have gained critical importance. As a consequence,
Model/View/Control (MVC) frameworks and such ”new” technologies as ORM,
I18N or other Web 2.0 techniques have found their way into web-application
development. In 2005, new web platforms including YouTube entered the cy-
berspace and launched a communication revolution. Media content such as audio
and video data has been essential to the latest Web 2.0 developments and has
motivated users to produce this media content themselves. As a consequence,
new protocols, container formats, and codecs for audio and video have been
developed, while a substantial increase in the available internet communication
bandwidth took place in parallel.

By implication, the demand for developing new means of communication is
continuing to increase and has contributed to the launch of a large number of
new video streaming web-applications. Most of these focus on Video on Demand
(VoD) services, such as online TVs or private video platforms. So far, the process
of capturing video and audio files has mostly been tied to applications that
must be installed on a computer’s hard drive. The concept of browser-based
media recording is not new in and of itself, as many different social networks or
? and contributors: Michael Bartosch, Lisa-Maria Niehoff



2 memoxo - browserbased recording of audio and video messages

microblogging platforms (e.g., Facebook or Twitter) have already integrated such
a service into their online strategy. Nevertheless, these services are closely tied
to their provider and their provider’s policies on data storage and copyright. For
this reason, memoxo has been realized as a prototype3 of a browser based media-
recording web-application to independently capture audio and video files online.
Memoxo is a free web-application that focuses on maximizing its flexibility with
regard to the parameters of its purpose or usage.

One of the main goals during the application’s development process was to
give the user full control and copyright over the self-created media content.
Whether the user intends to send the created content as a message to another
person, to publish it, to post it, to delete it, or simply to save it as a note to
him/herself is in the end a decision to be made at the sole discretion of the user.

Section 2 of this article introduces memoxo’s core functions, as well as its
user interface, while section 3 provides its technical details, such as protocols and
streaming technology. Section 4 sketches out two possible (extended) application
scenarios, i.e., accessibility and elearning, and section 5 provides a conclusion to
this article.

3 http://www.memoxo.com



memoxo - browserbased recording of audio and video messages 3

2 Memoxo core functions

Memoxo’s main purpose is to provide online recording of audio and video con-
tent and various actions of communicating this content or, respectively, these
messages. This core purpose consists of four different types of actions: record,
send, store, and publish.

2.1 Record

The process of recording is memoxo’s most important function in order to cap-
ture media content. Memoxo offers two different recording options:

– Recording of audio content alone
– Recording of video content (including audio)

This explicit differentiation was made due to two reasons: (i) users without a
camera should still be able to use memoxo to record audio messages, (ii) as audio
messages require less memory and streaming bandwidth, the audio recorder is
especially suitable for users with low bandwidth. Both the audio and audio/video
recorder involve the same four control mechanisms:

– Start recording
– Pause recording
– Resume recording
– Play recorded data

The actions of ”pause recording” and ”resume recording” were applied in order
to give the user time for both thinking and speaking while recording a message
by allowing him/her to interrupt and resume the recording process at any time.
This functionality is likely to benefit both the file size of the recorded content
and the quality of the message due to the fact that it helps to avoid idle recording
times. All four control mechanisms can also be operated by keyboard rather than
using the GUI (Fig. 1), which enables for example blind users to record messages
by means of their preferred input device. Once a user has finished the recording
process, he/she is provided with several options for sending, publishing or saving
the recorded content, as described in the following paragraphs.

2.2 Send

In order to send the recorded media content, a user must perform several manda-
tory tasks such as filling in the email address of the intended recipient and provid-
ing a subject line for the message. To enhance the process of defining a recipient,
memoxo offers an address book in which the user can save his/her contacts and
add them to the recipient list with a single mouse click (or keystroke). Further-
more, the address book doesn’t have to be populated by manual entries, as a
user may simply import contacts from other email or communication providers
such as Gmail, Hotmail or Yahoo. In addition to specifying a recipient and the



4 memoxo - browserbased recording of audio and video messages

Fig. 1. graphical user interface of memoxo’s audio/video recorder

subject line, a user can add additional data to a message, such as attached files
or a text string. Once the user has entered the required fields, the message can be
sent, which means that the recipient will receive an email containing the sender’s
email address, the subject line, optional data (text-message, file attachments)
and a text-link. This link points to the recorded message content on memoxo’s
media server (described in section 3). After a message is sent, its creator can con-
vert the recorded media data into any desired format and download the message
during a predefined time window or actively delete the message.

2.3 Store

If a user decides to neither send nor publish, but rather to store the recorded
content, he/she is able to do so without entering a recipient, but the user must
nevertheless provide a subject line. In this case, the subject line merely serves as
a descriptor for the recorded content, which will be saved in the user’s personal
message archive. An archived message can also be sent or published at a later
point of time, just as a sent message can subsequently be saved to the user’s
archive.

2.4 Publish

Another way of communicating a recorded message apart from sending it to one
or more recipients lies in publishing the content. In order to do so, the user (who
must be the creator of the message) can ”unlock” the recorded media in order
to receive a snippet of HTML code (embedding code). This code can be pasted
into any website, blog, forum, eLearning platform or social network. Due to the



memoxo - browserbased recording of audio and video messages 5

fact that published videos have a tendency to spread and circulate over time,
memoxo also provides its users with the possibility of ”locking” the recorded
media again at a later point in time. Doing so renders any embedded instance
useless, as the associated media file is no longer publicly accessible.



6 memoxo - browserbased recording of audio and video messages

3 Conceptual model of Memoxo

3.1 Memoxo architecture

The concept of such a web-application is simple and clear as figure 2 shows.

Fig. 2. conceptual model

On the one hand, the model consists of the ”memoxo user”, who is capable
of creating and receiving audio and video messages. It does not matter whether
this user sends messages internally to memoxo registered users or to the ”outside
world” to non-registered users. A random security code is needed in order to
guarantee that only the intended receiver is actually able to access the message.
On the other hand, the model also incorporates non-registered users, who are
not in a position to create audio or video messages using memoxo. However, this
group can still receive messages, as memoxo’s web-application sends the recipient
a notification email that contains a link to the web-application, which in turn
automatically starts the message. If the message’s creator publishes the message
(e.g., in a forum), the message can also be received and can be ”read” in the Web.
In this scenario, the recipient does not connect to the web-application itself, but
rather directly to memoxo’s media server. To perform these actions, the web-
application has to be connected to the media server in order to send and receive
A/V data. The message itself is stored on a storage platform, while a database
is needed for authentication purposes and also to store other information such
as facts about the creator, the message type (audio or video), the user’s address
book, and all other internal data for the web-application. Providing a clear and
structured implementation for this storage is a major challenge, as otherwise
things could become complicated and the borders between the media server and
web-application could suffer, leading to the loss of a great deal of flexibility and
extensibility.



memoxo - browserbased recording of audio and video messages 7

3.2 Technical issues of the Web Frontend

Because the Web frontend is what the user sees, its layout is very important; this
matter will be discussed later. In the following section, we focus instead on the
technical issues involved. The choice of which specific programming language to
use is very difficult these days, as each language brings with it certain advantages
and disadvantages. The need to use a framework for implementing the project in
particular proved to be a stumbling block. Consequently, we tested a number of
frameworks, including Seagull (PHP), Zend (PHP), Jifty (Perl), Catalyst (Perl),
and Ruby on Rails, as well as others. The important requirements were:

1. Extensibility
2. Reusability
3. Flexibility
4. Reliability
5. Performance
6. Available plugins
7. Available modules

Most of the frameworks we tested have in common that they are MVC (Model
View Control) frameworks, which ensures that handling is both clear and well
structured: the model for processing the data, the controller to prepare it and
the view to present it. As the use of HTML templates or ORM (Object Record
Mapper) to communicate with the database is common among the languages,
there were no really major differences between them. In the end, we selected the
perl framework Catalyst [1] mainly due to the fact that:

– Perl is a very powerful programming language,
– A lot of plugins are available for it,
– A huge repertoire of modules [2] exist, and
– The web-application can be deployed for almost every commonly-used oper-

ating system.

In particular, the possibility of using ”Template Toolkit” [3] for the view
provided a main reason for using Catalyst. ”Template Toolkit” is a powerful
template engine written in Perl and C that, for example, makes it possible to
produce HTML code with a very high level of reusability. Also, the possibility of
using different directives, virtual methods, filters and plugins makes ”Template
Toolkit” a very powerful engine and its use as the View in a ”Catalyst Web
Application” is even recommended [4]. Given that the aspect of preparing the
HTML code for multilingual use is very interesting, it is worth noting that
preparing the web-application for more than one language is very simple in
combination with the Catalyst plugin ”I18N”. To prevent umlaut bugs and to
prepare the entire web-application for non-Latin characters, the complete HTML
code was written in UTF-8.

The design of a database as the main data store for such information as
user accounts and the save a record feature was also of crucial importance.



8 memoxo - browserbased recording of audio and video messages

A MySQL database capable of storing UTF-8 data was created. Such UTF-
8 conformance was a major prerequisite for the database, due to the need to
provide a multilingual frontend and to prevent conversion. For the ORM, we
applied the Perl package DBIx, which is supported by Catalyst and ensures the
possibility of changing the database system in the future. Because not every
part of the web-application should be accessible by anonymous users, memoxo
users must login in order to use the service. Session keys are used to identify
logged-in users, with the individual keys expiring after a certain time in order
to prevent abuse. The key and the session-based data (e.g., preferences) are
stored in the database, with Catalyst’s ”Session Plugin” used for this purpose.
The last step in designing and programming the frontend involved deploying
the web-application at a web server, for which Catalyst offers several different
methods [5]. Currently, memoxo runs as a mod perl application in combination
with an Apache web server. The major disadvantage of this approach may lie
in the fact that all packages and modules are loaded in the local memory: a
full server restart is required if something is changed in the source code or a
new package has been installed. Because mod perl is also very memory-thirsty,
running Catalyst as a FastCGI application represents the next logical step. The
static content of the web-application is managed by the cache of the Apache web
server. To prevent the rendering of the templates for every request, they are also
available in some sort of cache.

3.3 Streaming

As memoxo’s main purpose is to provide the browser-based recording of audio
and video, a simple web-application is solely a container for memoxo’s main
functions.

Most projects in the Web use external applications to do the work for them;
for example, the VLC player is very well-known for streaming applications. But
for our scenario, only a simple browser should do the work, without the need to
rely on any third-party applications.

The client As browsers themselves are not capable of recording videos or sound
from the peripheral devices of a computer or laptop, a method is needed for
grabbing the signals from the microphone or webcam and sending them to the
memoxo media server. One possible way to do so lies in using Adobe Flash.
Although one consequence of using Adobe Flash is that every memoxo user would
need to install the ”Adobe Flash Plugin”, this is not really an issue, as most Web
users already have installed it on their computers. After all, otherwise they would
not be able to watch YouTube videos or play Flash-based games. However, the
issue of how to transfer the audio and video signals to the server does represent
a challenge. Adobe Flash permits the writing of ”Action Scripts” that enable
work within the Flash-application, such as manipulating the layout, creating
buttons, or interacting with the user. Luckily, Flash also provides possibilities
to use a computer’s audio and video peripheral devices. Actually there are two



memoxo - browserbased recording of audio and video messages 9

possible ways of writing Action Scripts: Action Script version 2.0 and the newer
version 3.0, which unlike its predecessor is fully object-orientated and allows
the programmer to choose from a richer repertoire of available Action Script
methods.

Consequently, we were able to capture the signals from the peripheral devices
and send them in real-time to the media server. While establishing a connection
to a media server is also no big challenge, transporting the message in real time
remained a challenge.

The HTTP protocol was not designed for such work and other protocols such
as SMTP and FTP were also not viable options. Instead, the solution was to use
RTMP in combination with Flash [6].

RTMP (Real Time Messaging Protocol) is a proprietary network protocol
developed by Adobe Systems that, with the help of Adobe Flash, makes it pos-
sible to transport audio and video signals over the Internet to a media server
or vice versa. This protocol uses port 1935 for communication, which some-
times presents a problem because of the firewall configurations on a Web Server.
RTMPT, which is based on the HTTP protocol, was developed to override this
firewall problem. As it is often also important to provide secure connections, the
HTTPS-based RTMPS was also developed. These three protocols make it pos-
sible to send audio and video data from a client to a server according to Adobe
Flash. Adobe Systems launched ”Flex” to reflect the fact that many software
developers wanted to implement Rich Internet Applications (RIA) but did not
like to work with Adobe Flash due to a wide range of differing opinions and
prejudices. The client still needs the Adobe Flash Player to use the application,
because Flex’s output is also a Flash application.

Instead, the big difference with Flex lies in its implementation. In contrast
to Flash, Flex’s user interface is not ”painted”, but rather written in MXML,
which is a XML-based, declarative language that allows the creation of a User
Interface in a different way. The Flex-compiler translates the MXML to Action
Script code and the result is a Flash application. The fact that Flex is almost
open source and the way in which Flash RIA are built have enourmously raised
its acceptance among programmers.

The server As mentioned previously, the media server has to ”understand” the
RTMP stream. Although an Apache web server is a media server, it is not built
for this type of work.

There are three well-known servers that matched our needs:

1. Adobe Flash Media Interactive Server (FMIS)
2. WOWZA Media Server
3. Red5

The Adobe FMIS is cost intensive. However, it supports a large number of
codecs, is very powerful and makes implementing an application very easy. In
addition, the fact that Flash is a product developed by Adobe Systems helps sig-
nificantly in developing as it ensures compatibility. The WOWZA Media Server is



10 memoxo - browserbased recording of audio and video messages

also a commercial product, but it is not as expensive as Adobe FMIS. WOWZA
Media Server, which garnered a lot of international prizes in 2009, also sup-
ports a huge amount of different codecs such as H.264 and is often used in VoD
(Video on Demand) projects. In contrast to the two preceding media servers,
Red5 is an open source product; its current version is 0.9. Red5 is often used in
non-commercial projects because of the fact that it is free and supports a large
number of codecs for publishing [7]. Memoxo’s characteristic as a non-profit
project fostered our decision to use Red5 as a media server. Learning how Red5
works costs some time, as users must implement the application for recording
on their own; only the server’s core is delivered. Nevertheless, users are able to
adapt the application to their specific needs. The Red5 application is written in
Java and uses the core’s specific classes to do the work.

– Listen to port 1935.
– If a stream starts, lookup in the database and ascertain whether the user is

allowed to record.
– If the user is allowed, create a FLV file and put the stream into it.
– When the user stops streaming, stop writing and mark it in the database as

”recorded”.

This is one of the main ways in which memoxo and other web-applications
work [8].

The documentation in Red5 is rather short, but a very powerful community
supporting the development of such projects exists. The community also created
some demo applications that supported the implementation of an application
such as memoxo. Configuring the server itself was straight-forward and starting it
was not such a big problem. But Red5 requires a lot of memory and CPU power.
Since Red5 supports multi-threading, the CPU power is not such an eminent
issue, but the memory issue still remains, unless there is sufficient bandwidth to
handle the enormous traffic. At least one to two gigabytes of memory is required
to run a Red5 media server [9], otherwise the server starts to swap and failures
in encoding or decoding could ensue. Memoxo’s major duty is to record audio
and video files. Currently, Red5 only supports recording FLV files, which is a
container format developed by Adobe Systems and has became famous through
platforms like YouTube [10]. Recording a video was no problem in previous times
when analogue media was used: put a cassette into a camcorder and press record.
But in the digital era, recording is not as simple as it may at first appear, due to
the fact that audio and video offer different codecs and choosing the ”right” one
is not a simple task. In fact, Red5 supports only two different codecs for audio
recording: Speex and Nellymoser. Speex [11] is a very fast codec that has an
extremely low bandwidth usage and is open source. Accordingly, Speex codec is
very often used in mobile or VOIP applications [12]. This codec’s disadvantage
lies in the fact that it currently only supports 5kHz recordings in combination
with Red5. While this is enough for recording the human voice, this codec is
not the best choice for music. Hopefully, this limitation will soon be fixed. In
contrast, Nellymoser is a closed codec (developed by Nellymoser Inc.) that serves



memoxo - browserbased recording of audio and video messages 11

as the default codec for FLV. However, the fact that Nellymoser is a closed codec
is a major drawback, as it impossible to convert the FLV into another container
format. Due the fact that Red5 is an open source project, some major bugs
occur from time to time. However, the response to such bugs is quite fast and
the development team of Red5 tries to fix them as quickly as possible. Moreover,
users do not have to wait for the next release of Red5 when a bug is fixed;
instead, they can check out the latest version of the source code from their SVN
(Subversion) repository and build the server on your own, which helps a lot in
developing. To conclude, Red5 is a very powerful media server that makes it
possible to implement almost every application that a media server needs.

In the following we describe two extended application scenarios in which
memoxo’s characteristics, as described in section 3, may provide enhancements.



12 memoxo - browserbased recording of audio and video messages

4 Extended Application Scenarios

Given its non-restrictive nature regarding the purposes of a user’s audio or
video recording, the range of application scenarios for memoxo is particularly
widespread. The following scenarios describe further capabilities of memoxo,
based on its core-purpose to record, send, publish and store audio and video
messages.

4.1 Web Accessibility

The Web enables persons and organizations around the world to retrieve and
provide information by various means of interaction. The basic principle of Web
Accessibility is to include the whole range of internet users, whether they expe-
rience some sort of disability or not. The range of impairments that are likely to
prevent a person from communicating via the Internet encompasses numerous
disabilities, such as visual impairments, cognitive disabilities or motor deficien-
cies. The W3C’s Web Accessibility Initiative therefore defines Web Accessibility
as a state in which

people with disabilities can perceive, understand, navigate, and in-
teract with the Web, and can also contribute to the Web. [13]

To efficiently use the Internet, people with disabilities are dependent on the
use of assistive technologies or devices (i.e. refreshable braille displays, custom
keyboards, screen readers or eye gaze systems) in order to compensate their par-
ticular kind of impairment. Nevertheless, when it comes to message interaction,
the concept of written text dominates and therefore urges people to use conven-
tional input devices such as a keyboard. Although a manual translation from
spoken language into written text is imaginable, it is just another interim stage
from spoken word to text. Therefore, memoxo’s simple mechanism to record,
send and archive audio messages straight from a user’s browser allows people
with visual or motor disabilities to avoid the exhausting use of textual input
devices and to stay within their preferred form of communication. Furthermore,
portals that are accessible in the same manner as memoxo are believed to attract
a larger number of users [14]. Due to memoxo’s simple navigation and control
mechanisms, blind users would be in the position to record and send messages by
the use of a few keystrokes rather than typing the whole message, as memoxo’s
recoding device is fully operable by keyboard. A short how-to is provided within
the audio/video recorder in order to introduce disabled users to memoxo’s func-
tionalities. Due to the use of Cascading Style Sheets (CSS), this introduction can
be made invisible for ”regular” users, but still be visible to assistive devices such
as screen-readers. In addition, deaf users too could benefit from using memoxo,
as it provides a solid base for the (video) transmission of sign language.

4.2 eLearning

On eLearning platforms, students’ success is based on various aspects, one being
quality feedback from their tutors. Especially with regard to assignments that



memoxo - browserbased recording of audio and video messages 13

include large visual components, textual feedback is often found to be incomplete
[15]. Furthermore, studies on the quality of video-feedback in eLearning situa-
tions have shown that video-feedback is experienced as a valuable and personal-
ized method by both tutors and students [16]. Therefore, memoxo (integrated in
an eLearning system) could enable the tutor to provide quality video feedback in
which parts of a student’s visual work can be commented or corrected by what
needs to be improved, rather than describing the location and kind of mistake
by typing an email. Additionally, memoxo could allow a tutor not just to give
feedback to a single student, but also to address a whole class of students by
publishing recorded assignments or feedback within the eLearning system.



14 memoxo - browserbased recording of audio and video messages

5 Conclusion

As a free browser-based web service, memoxo allows its users to record, send
or publish audio and video content. Memoxo’s main character is defined by its
user-centered approach, which means that the users have full control and rights
with regard to the media content they record. The memoxo project does not as-
pire ownership or long time storage of user-created data; instead, its designated
objective is to provide users unlimited control and unrestricted rights regard-
ing their recorded media content. Based on accessibility standards and Red5,
memoxo uses the latest technology in order to provide a fast, reliable and easy-
to-apply user experience. As initial implementations show, memoxo’s purpose is
defined by the users’ intentions on what is to be recorded and how it is communi-
cated. Also, we believe that the fact that memoxo is an independent service that
does not seek any gain from recorded messages and is not tied to any particular
media platform makes memoxo a trustworthy portal for Internet users to record
and distribute original digital media content.



memoxo - browserbased recording of audio and video messages 15

References

1. “Catalyst web framework.” http://www.catalystframework.org/, 2010.
2. “CPAN search.” http://search.cpan.org/, 2010.
3. “Template toolkit.” http://template-toolkit.org/, 2010.
4. J. Rockway, Catalyst. Packt Publishing, 1 ed., 2007.
5. K. Diement and M. S. Trout, The Definitive Guide to Catalyst: Writing Extensible,

Scalable and Maintainable Perl-Based Web Applications. Apress, 1 ed., 2009.
6. A. Shionozaki, “Integrating routing and resource reservation mechanisms in real-

time multicast protocols,” in ICDCS ’96: Proceedings of the 16th International
Conference on Distributed Computing Systems (ICDCS ’96), (Washington, DC,
USA), p. 141, IEEE Computer Society, 1996.

7. “Red 5.” http://www.red5.org/, 2009.
8. J. Bross, J. Oppermann, and C. Meinel, “Enabling video-blogging without rely-

ing on external service-providers,” Computational Science and Engineering, vol. 4,
pp. 515–522, 2009.

9. S. Sukaridhoto, N. Funabiki, T. Nakanishi, and D. Pramadihanto, “A compara-
tive study of open source softwares for virtualization with streaming server ap-
plications,” in Consumer Electronics, 2009. ISCE ’09. IEEE 13th International
Symposium on, pp. 577–581, May 2009.

10. P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view
from the edge,” in IMC ’07: Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, (New York, NY, USA), pp. 15–28, ACM, 2007.

11. T. xiph open source community, “Speex.” http://www.speex.org/, 2009.
12. B. R. Chang, C.-P. Young, H. F. Tsai, and R.-Y. Fang, “Embedded system

for inter-vehicle heterogeneous wireless-based real-time multimedia streaming and
video/voice over ip,” Fourth International Conference on Innovative Computing,
Information and Control, pp. 365–368, 2009.

13. W3C-WAI, “Introduction to web accessibility.” http://www.w3.org/WAI/intro/

accessibility.php, 2010.
14. M.-L. Leitner, R. Hartjes, and C. Strauss, “Web accessibility issues for the dis-

tributed and interworked enterprise portals,” in ICPPW ’09: Proceedings of the
2009 International Conference on Parallel Processing Workshops, (Washington,
DC, USA), pp. 270–275, IEEE Computer Society, 2009.

15. A. Inglis, “Video email: a method of speeding up assignment feedback for visual
arts subjects in distance education,” British Journal of Educational Technology,
vol. 29, no. 4, pp. 343 – 354, 1998.

16. S. Hase and H. Saenger, “Videomail — a personalised approach to providing
feedback on assessment to distance learners,” Distance Education, vol. 18, no. 2,
pp. 361–368, 1997.


