Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen

Morten Poulsen¹, Clarissa Schwab², Bent Borg Jensen¹, Ricarda M. Engberg¹, Anja Spang², Nuria Canibe¹, Ole Højberg¹, Gabriel Milinovich², Lena Fragner³, Christa Schleper², Wolfram Weckwerth³, Peter Lund¹, Andreas Schramm⁴ & Tim Urich²

Rumen methanogens are major sources of anthropogenic methane emissions, and these archaea are targets in strategies aimed at reducing methane emissions. Here we show that the poorly characterised Thermoplasmata archaea in bovine rumen are methylotrophic methanogens and that they are reduced upon dietary supplementation with rapeseed oil in lactating cows. In a metatranscriptomic survey, Thermoplasmata 16S rRNA and methyl-coenzyme M reductase (mcr) transcripts decreased concomitantly with mRNAs of enzymes involved in methanogenesis from methylamines that were among the most abundant archaeal transcripts, indicating that these Thermoplasmata degrade methylamines. Their methylotrophic methanogenic lifestyle was corroborated by in vitro incubations, showing enhanced growth of these organisms upon methylamine supplementation paralleled by elevated methane production. The Thermoplasmata have a high potential as target in future strategies to mitigate methane emissions from ruminant livestock. Our findings and the findings of others also indicate a wider distribution of methanogens than previously anticipated.
Ruminant livestock is a major global source of methane (CH₄)1,2. The digestive fermentation activity of ruminants accounts for ~37% of anthropogenic CH₄ emissions3. CH₄ is the end product of a complex anaerobic degradation pathway of plant biomass by the ruminal microbiota, the terminal group being methanogenic archaea. H₂ is the major energy source of rumen methanogens known to date4, and these archaea are targets in strategies aimed at reducing CH₄ emissions. With rumen methanogens known to date3, and these archaea are cluster C Thermoplasmata7) was found to be highly abundant in manipulations are poorly understood12.

Results
Effect of RSO supplementation on CH₄ emission. RSO supplementation significantly reduced CH₄ emission, as shown by a 6.2% lower CH₄-to-CO₂ emission ratio (P < 0.05; Supplementary Table S1). In a previous experiment with identical diets, CH₄-to-CO₂ ratio was reduced by 8.5% upon RSO supplementation, corresponding to an 18% reduction in emitted CH₄ per energy corrected milk yield13 (Supplementary Table S1).

Rumen metatranscriptomics. A metatranscriptomics approach with random-hexamer primed reverse transcription was applied on rumen fluid to simultaneously assess the impact of RSO on the abundance of rumen microorganisms and their gene expression14 (see Methods). Illumina deep-sequencing with overlapping read paired-end technology13 resulted in ~10–12 million high-quality reads of ~160-bp length per sample. Although the majority of sequences represented rRNA (‘ribo-tags’), between 380,000 and 485,000 sequences were putative messenger RNAs (mRNAs) (Supplementary Table S2).

A three-domain profile of the rumen microbiota revealed that Bacteria and Eukaryotes each contributed approximately 50% of ribo-tags, whereas Archaea were present at approximately 1% (Supplementary Fig. S1; see Supplementary Figs. S2 and S3 for a complete overview of bacterial and eukaryotic communities, respectively). The Archaea was constituted by Methanobacteriales (genera Methanobrevibacter and Methanosphaera) and the RCC Thermoplasmata. Surprisingly, only the RCC decreased significantly (P < 0.05) with RSO supplementation (Fig. 1), indicating that they were associated with the reduction in CH₄, whereas the well-studied Methanobacteriales were not. Likewise, the mRNA levels of the key-enzyme methyl-coenzyme M reductase (Mcr) were reduced upon RSO amendment (Fig. 1).

Remarkably, transcripts of all three subunits α, β and γ of Mcr were significantly reduced in the RSO-supplemented diet (Fig. 1), showing that the poorly characterised Thermoplasmata in bovine rumen are a novel group of methylotrophic methanogens and that they are reduced upon CH₄ mitigation in lactating cows.

 #: Methanobacteriales orders within the phylum Euryarchaeota. These orders have all been characterised as hydrogenotrophic, utilizing H₂/CO₂ or H₂/methanol produced by various fermentative bacteria in the process of anaerobic degradation of plant biomass. A novel group6 distantely related to the Thermoplasmatales (recently named ‘rumen cluster C’, (RCC)3; previously described as rice cluster C Thermoplasmata7) was found to be highly abundant in ruminants based on 16S ribosomal RNA (rRNA) genes3. No representatives of the RCC Thermoplasmata have been isolated, although their methanogenic lifestyle was proposed because of the parallel presence of distinct methyl-coenzyme M reductase genes (mcr)3,8,9. However, the recently described Methanomassiliicoccus luminyensis isolated from human feces from the related rice cluster III clade provided evidence for methanogenic Thermoplasmata10.

Approaches to reduce CH₄ emission from livestock, such as dietary supplementation of unsaturated fatty acids11, typically focus on reducing H₂ availability for rumen methanogens. However, because of the complexity of the rumen microbiota, results are not fully predictable and the effects of the manipulations are poorly understood12.

Here, for the first time, a metatranscriptomic approach was used to investigate the in vivo effect of rapeseed oil (RSO) supplementation on the rumen microbiota of lactating Holstein cows, with particular focus on methanogenic archaea. We show that the poorly characterised Thermoplasmata in bovine rumen are a novel group of methylotrophic methanogens and that they are reduced upon CH₄ mitigation in lactating cows.

Figure 1 | Effect of RSO on methanogens in vivo. Relative abundances of transcripts from RCC (upper row) and from Methanobacteriales (bottom row) from individual cows on control and rapeseed oil (RSO)-supplemented diets, respectively. Relative fraction of archaeal SSU ribo-tags affiliated to RCC and Methanobacteriales is shown as % of total SSU reads, and fraction of mcrA, mcrB and mcrG transcripts detected for RCC and other methanogens (that is, Methanobrevibacter ruminantium and Methanosphaera stadtmanae), shown as % of all mRNA transcripts with a significant homologue in Genbank nr (e-value < 1e⁻⁵) for each sample. P-values ≤ 0.05 are considered representing significant effects of fat supplementation (*marked) using paired t-test. The mcrG of RCC was trend-wise affected by fat supplementation (P < 0.10). n.s., not significant; suppl, supplement.
were affected (Fig. 1). The decrease of mcrA transcripts was corroborated by quantitative PCR (qPCR) (Supplementary Table 3).

Mcr transcript assembly using the CAP3 program resulted in full-length sequences of the three mcr subunits α, β and γ, among shorter contigs. Although several of the short contigs were highly similar to mcr subunits of Methanobrevibacter and Methanosphaera, the long contigs were only distantly related to mcr of Methanobrevibacter and Methanosphaera or to other cultured methanogens (<70% DNA similarity) (Fig. 2a). However, mcrA was >95% similar to partial mcrA genes associated with the RCC archaea (for example Evans et al. and Acc. nos. JN229252/JN229233). Based on this, all three subunits were assigned to RCC. We validated this approach through assembly of the archaeal transcripts of elongation factor 1α (EF-1α) and 16S rRNA. Phylogenetic reconstruction of a translated amino-acid sequence of the obtained full-length EF-1α revealed an association with EF-1α of the Thermoplasmata branch of Euryarchaota (Fig. 2b), which is similar to the placement of the 16S rRNA of RCC (Fig. 2c). Assignment of all single mcr transcripts to the full-length mcr genes of the RCC clade and the Methanobacteriales revealed a significant decrease of mcrA and mcrB transcripts of RCC upon RSO amendment (P < 0.05; Fig. 1), and not of the Methanobacteriales. Taken together with the 16S rRNA data, this gives evidence that the RCCs were responsible for the decreased CH4 emissions.

Figure 2 | Phylogenetic analysis of RCC Thermoplasmata. Maximum likelihood phylogenetic analyses of concatenated mcrA, EF-1α and 16S rRNA sequences of RCC. (a) McrA phylogeny based on an amino-acid alignment (569 positions after removal of ambiguously aligned sites and 100 bootstraps). The scale bar refers to 10% estimated sequence divergence. (b) EF-1α phylogeny based amino-acid alignment (368 positions) (removal of ambiguously aligned sites, 50% indel filter and 100 bootstraps). The tree was rooted with corresponding sequences from Cren-, Kor- and Thaumarchaeota. The scale bar refers to 10% estimated sequence divergence. (c) 16S rRNA phylogeny based on nucleotid alignment (1212 positions) (removal of ambiguously aligned sites and 100 bootstraps). Thaumarchaeal 16S rRNA sequences were used as outgroup. The scale bar refers to 5% sequence divergence. Nodes with bootstrap value < 50 were removed and are shown as multifurcations.
Methylyotrophic methanogenesis from methylamines (MAs).

Although the RCC clade has been previously suggested as a novel order of methanogens\(^3,9\), information on the pathway of methanogenesis was not available. A global functional analysis of all mRNAs with MEGAN using the SEED functional categories\(^{16}\) revealed the presence of transcripts for the methanogenic pathways with methylated compounds as substrates (Fig. 3a). These were similar in abundance to transcripts of the ‘core methanogenesis’, and likewise decreased significantly upon RSO treatment (\(P<0.05\), Supplementary Fig. S4a). Closely inspection identified transcripts for utilization of tri-, di- and monomethylamine and methanol, pointing to these substances as important substrates for the rumen methanogens (Fig. 3b). Especially, the presence of transcripts for utilization of MAs is remarkable, because Methanosarcinaceae were until now the only methanogens known to grow on these substrates. Furthermore, all enzymes in the three MA pathways were only distantly related to those from Methanosarcinaceae (<66% amino-acid sequence identity, Supplementary Table S4). The first enzymes in these pathways are corrinoid-dependent MA methyltransferases (Mt1\(^{17}\)); these contain the unique, reactive amino-acid pyrrolysine (the 22\(^{nd}\) aa), encoded via an in-frame stop codon on the mRNA, as a conserved trait\(^{17}\). All putative mt1 transcripts harboured this stop codon, making it highly likely that these indeed encode functional Mt1 enzymes. In summary, the metatranscriptomic data strongly suggest that RCCs are a novel order of methylotrophic methanogens, obtaining energy and carbon from MAs derived from the degradation of betaine and choline, and possibly also from methanol. Additional evidence for this methylotrophic methanogenic lifestyle comes from the recently isolated Methanomassiliicoccus luminyensis of the closely related rice cluster III, which was isolated with H\(_2\)/methanol as substrate. A screening of the \(M.\ luminyensis\) genome\(^{18}\) with the RCC transcripts revealed the presence of all genes for methanogenesis from MA (Supplementary Table S4).

Sources of MAs and rumen nitrogen cycling. Formation of TMA from glycine betaine and (phosphatidyl-) choline by rumen bacteria and of CH\(_4\) from MAs has been shown during the last decades\(^{20–23}\). The identification of methylotrophic RCC finally identifies the responsible methanogens. Especially, glycine betaine is present in high amounts in feeds containing beet pulp, which was also included in the diet used in this study (see Supplementary Table S5 for details). This might also explain the comparably high abundance of RCC compared with other studies\(^3\). As the degradation of MAs leads to the release of ammonium (NH\(_4^+\)), the utilization of MAs by RCC has implications for the entire rumen bacterial community. Intriguingly, the metatranscriptomic data also revealed a decrease of 30–60% of transcripts for NH\(_4^+\) assimilation in the RSO-supplemented cows (Supplementary Fig. S4b), suggesting that RCC constitute an additional supplier of NH\(_4^+\) in the rumen, besides NH\(_4^+\) derived from protein degradation.

Figure 3 | Transcripts of methanogenesis from methylamines. Effect of RSO amendment on the expression of SEED functional gene categories of (a) methanogenesis from methylated compounds combined and (b) transcripts for utilizing MAs and methanol as substrates for CH\(_4\) production inferred from a global functional analysis of all mRNAs with MEGAN using the SEED functional categories. MMA, monomethylamine; DMA, dimethylamine; TMA, trimethylamine; MeCbl, methylcobalamin; MeOH, methanol. \(P\)-values \(\leq 0.05\) are considered representing significant effects of fat supplementation (*marked) using paired t-test. n.s., not significant; suppl, supplement.
Inhibitory effect of RSO. In order to obtain an estimate about the concentration of MAs in the rumen fluids and to obtain insights into the inhibitory effect of RSO on RCC, we quantified TMA using direct infusion Orbitrap mass spectrometry (see Methods). The TMA concentrations were approximately 40 μM in the controls and increased about fivefold to 220 μM in RSO samples. These data show that (1) substantial amounts of TMA were present in the rumen fluids and (2) that TMA did not become limiting in the RSO samples. The latter indicates that the inhibitory effect of RSO on RCC is not via substrate limitation. Rather, RSO components (for example, glycosinolates) might have been directly or indirectly toxic for RCC. This conclusion is supported by the fact that no consistent change in the rumen bacterial community composition of replicate samples was observed with RSO amendment (Supplementary Fig. S2), as it would have been expected in the case of indirect RSO effect via shifts in the metabolic pathways, leading to substrate limitations for RCC.

Discussion

This study provides compelling evidence that the RCC clade of Thermoplasma is a novel group of methylotrophic methanogens in the bovine rumen with MAs as their major energy and carbon sources. It is currently unclear whether RCC are also hydrogenotrophic or not, however, our data show that RCC occupy a niche separate from the other rumen methanogens. Nevertheless, this study showed that RCC, rather than solely hydrogenotrophic methanogens, are the primary target of CH4 mitigation via RSO supplementation. Because the RCC clade has been detected in many ruminants worldwide3, our findings suggest new possibilities for CH4 mitigation strategies for dairy cows, either by targeting the RCC directly or via dietary supplements focusing on MA, and not on H2, for mitigating ruminal CH4 production. Still, long-term feeding experiments are needed to uncover the true potential of RCC as targets for CH4 mitigation strategies.

The identification of methanogenic organisms in the Thermoplasma branch of the archaeal phylum Euryarchaeota in this study and other studies10,19 published during the review process of this work substantiates previous theories about the widespread occurrence of this potentially primordial metabolism that probably developed early in evolution and was in the common ancestor of all Euryarchaeota24, perhaps even of all archaea. It is also noteworthy that this branch of Thermoplasma harbours several other groups devoid of cultivated representatives, which have been detected in rice field soils, marine sediments and other presumably anoxic habitats7, indicating a previously unrecognized, wider ecological distribution of methanogenic archaea19.

Methods

Diets and experimental setup. Four Holstein dairy cows were fed two different diets, a control (total fat content of 3.5% of dry matter (DM)) and a RSO-supplemented diet (supplemented with 33 g RSO per kg feed, resulting in a total fat content of 6.5% of DM; Supplementary Table S5), in a conventional 4 × 2 crossover design where two cows were fed the low-fat-control diet and two cows were fed the fat-supplemented diet during the first period, and vice versa during second period. Each feeding period lasted for 3 weeks and the cows were fed twice daily during the entire period. The animal experiment was designed and approved by The Experimental Animal Inspectorate under The Danish Ministry of Justice (2008/561–1500), and completed with the highest consideration for the well being of the cows. However, one cow was excluded from the full experiment because of health considerations, which were not related to the feed manipulation.

Quantification of CH4 emission from dairy cows. CH4 emission from the cows was quantified using custom-built transparent polycarbonate chambers (1.83 × 3.82 × 2.45 m) located in the barn. The cows were housed individually, and quantification of CH4 and CO2 emission from each cow was performed over two times 48 h during the last week of each feeding period. The air flow through the chambers was measured with a mass flow meter (Teledyne Hastings Instruments, Hampton, VA, USA), and CO2 and CH4 was quantified using infrared sensors (Columbus Instruments, Columbus, OH, USA) exactly as described in Hellwing et al.25

Nucleic acid extraction and double-stranded (ds) cDNA synthesis. Rumen fluid-sampling strategy was developed from previous publications26–28, taking into account that a significant fraction of the rumen microbiota is adhered to fibers. Hence, representative samples of rumen fluid were collected at the end of each feeding period from the top and bottom part of the frontal, mid and distal section of the rumen (25 ml from each area) through a rumen fistula. The rumen fluid was pooled in sterile plastic bags with filter inserts (pore size 0.5 mm, Grade Blender Bags; VWR - Bue & Bernsen, Denmark), physically disrupted to release microorganisms from fibers into the rumen fluid, enabling sampling of rumen fluid representing both the fiber-adhered and the always occurring rumen fluid community. Finally, rumen fluid was sieved and decanted into 1.5 ml Eppendorf tubes, snap frozen in liquid nitrogen and stored at −80 °C until nucleic acid (NA) extraction. NAs were extracted using a standard phenol–chloroform bead-beating procedure. RNA was further purified using the NucleoSpin RNA Clean-up XS (Macherey-Nagel). RiboLock RNase inhibitor was added to purified RNA samples. The contaminated DNA was removed from the combined RNA/DNA extracts through the use of the DNase 1 kit (Fermentas). The absence of DNA was verified by PCR targeting the 16S rRNA gene (Supplementary Table S6). DNase-treated RNA was purified using the MEGAclean kit (Invitrogen). Total RNA was quantified using a NanoDrop-1000 (Thermo Fisher Scientific, Waltham, MA, USA) and quality of the purified RNA was tested using the Experion RNA StdSens Analysis Kit (BioRad, Hercules, CA, USA).

The synthesis of double-stranded cDNA was performed using the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen) as previously described29.

Sequencing and bioinformatic analysis. Sequencing of the samples was performed on the Illumina HiSeq2000 system (BGI, Shenzhen, Hong Kong) using fragmented ds cDNA (≈160 bp; paired-end sequenced from 2 × 100 bp read

![Figure 4](image-url)
lengths). Paired-end reads were assembled using the SHE-RA software. Concatenated sequences were filtered using a 60% quality confidence cutoff. Small subunit (SSU) rRNA sequences were aligned according to the alignment of mcrA genes. Taxonomically, pre-binned RCC 16S rRNA tags were assembled with default parameters.

McrA, EF-1x and 16S RNA phylogeny reconstruction. Sequences were downloaded from NCBI and the Functional Gene Pipeline/Repository homepage (http://fungene.cme.msu.edu/). McrA and EF-1x protein sequences, as well as 16S RNA genes, were aligned using clustalW2 (ref. 33) from European Bioinformatics Institute (EBI). Alignments were manually curated in BioEdits34, and ambiguously aligned positions were removed (a 50% indel filter was applied for the EF-1x alignment). Phylogenetic analyses were performed with the Maximum Likelihood (PhyML) software35 using default parameters and 100 bootstraps, and phylogenies were visualized with NJPlot36.

Quantification of mcrA gene copies by qPCR. Quantification of methanogen mcrA gene copies in ds cDNA was done using the Roche Lightcycler 480 instrument (Roche, Mannheim, Germany). Each reaction (20 μl) consisted of 10 μl of Sybr Green I Master Mix (Roche), 1 μl each of mfs for forward primer and mcrA reverse primer (10 pmol μl−1) (Supplementary Table S6), 7 μl of ddH2O and 1 μl of ds cDNA template at a concentration of approximately 10 ng μl−1 (ds cDNA concentration quantified using NanoDrop-1000, Thermo Fisher Scientific). Running conditions were 95°C for 3.5 min followed by 40 cycles of 92°C for 30 s, 55°C for 30 s, and 60°C for 30 s. Acquisition of fluorescent signal was done at 83°C (15 s) after each cycle. Product specificity and size was confirmed by melting point analysis and by agarose gel electrophoresis, respectively. Detection range for mcrA gene copies was between 101 and 109 gene copies per μl in the standards prepared for qPCR (slope: −3.362, efficiency: 1.983, error: 0.0124).

Rumen fluid incubations with TMA. Rumen fluid was sampled from a rumen fistulated Holstein breed dairy cow fed a maintenance diet37. Rumen fluid was incubated with TMA solution for at least 20 min (15 mM, final concentration). All bottles were again incubated (38°C, 150 rpm, controlled shake incubator (38°C, 150 rpm)). At the end of the experiment, the bottles were flushed with a gas mix consisting of 10% H2, 10% CO2, 30% C2H6, 30% CO, 10% CH4, 10% N2, and 10% O2 for 10 min. Methane was measured using a gas chromatograph (Thermo Fisher Scientific, Bremen, Germany) using direct injection at a flow rate of 1 ml min−1. Spectra were recorded with the high-resolution Fourier-Transforma
tion mass analyzer. The system was rinsed between sample injections with buffer solution for at least 20 min.

Nucleic acid isolation from rumen fluid from in vitro incubations. Nucleic acids were isolated from 150 μl rumen fluid using a standard phenol-chloroform method as described in Austin et al. DNA was isolated from nucleic acids using the Allprep DNA/RNA kit (Qiagen, Hilden, Germany) and quantified using Nanodrop (Thermo Fisher Scientific).

qPCR of gene copies in rumen fluid. Gene copies of total bacteria, RCC and non-RCC methanogens 16S rRNA genes, mcrA genes of all methanogens and the MA mcrB gene of the MA and Methanobacterium (mmtB) gene of the RCC were determined by qPCR using a primer pair summarized in Supplementary Table S6. Primers were designed based on metatranscriptome reads. Cloning and sequencing of PCR amplicons confirmed their specificity. Primers 958F and 1100AR were used to quantify 16S rRNA of non-RCC methanogens (Methanobrevibacter, Methanocrevibacter, Methanomassiliicoccus and Methanopyera). These primers do not amplify RCC because of 1 and 3 bp mismatches29. qPCR was performed using a standard PCR reaction (Eppendorf, Hamburg, Germany). 1 μl of templates contained 10 μl Qiagen FastQuant SYBR Green PCR mix, 1 μl of each of the specific primers at a final concentration of 0.25 μM and 1 μl of template DNA. Running conditions were 95°C for 5 min followed by 40 cycles of 95°C for 10 s, 60°C for 15 s and 72°C for 30 s. Gene copies were calculated per μg DNA. For generation of plasmids to determine standard curves, the RCC 16S rRNA genes, mcrA and mrtB, were amplified from rumen fluids, and PCR products cloned using pGemT-Easy Cloning (Promega, Fitchburg, WI, USA). For generation of standard curves of bacterial 16S rRNA and non-RCC methanogens, long fragments of PCR amplified 16S rRNA genes were used. Plasmids were linearized and PCR products were diluted serially in 10-fold and applied as template in qPCR reactions. Melting curve analysis and agarose gel electrophoresis were performed to verify the identity of the genes of interest.

Statistical analysis. Data were statistically analysed using SigmaPlot (SigmaPlot 11; Systat Software) or Graph Pad. Effects of fat supplementation on SSU and mcrA gene transcripts of RCC and Methanobacteriales, as well as on bacterial and eukaryote SSU reads, were tested using paired t-tests. The impact of fat supplementation on CH4 from CO2/H2, CH4 from CH3-R and NH4+ assimilation transcripts was evaluated using one-tailed paired t-tests. CH4 in vitro production from TMA was tested using non-paired t-test. Gene abundances of methanogens and bacteria during in vitro fermentations were compared with one-way ANOVA applying the Holm-Sidak all-pairwise multiple comparison. Generally, P-values ≤ 0.05 were considered significant. The magnitude of effects of treatments, respectively, and P-values between > 0.05 and ≤ 0.10 represent trend-wise effects of treatments.

References


Acknowledgements
We thank the skillful assistance of M. Brask, A.L.F. Hellwing and T.N. Jakobsen (Tjele) during the in vivo feeding experiment. We also thank T. Rattei and T. Weinmaier (Vienna) for their help in sequence analysis. This study was financially supported by the Ministry for Food, Agriculture and Fisheries, the Faculty of Science and Technology, Aarhus University, Denmark and by the Austrian Federal Ministry of Science and Research (GEN-AU III InflammBiota).

Author contributions
The study was designed by M.P. and T.U. Samples were collected by M.P. DNA/RNA extraction and qPCR was performed by M.P. and C.S. The ds cDNA synthesis was performed by M.P. and G.M. Analysis of Illumina sequencing data was performed by T.U., M.P. and C.S. mcra, 16S rRNA and EF-1α phylogenies constructed by A.Sp., M.P. and T.U. In vitro incubations and qPCR analyses were conducted by M.P. and C.S. L.F. and W.W. quantified TMA concentrations. Statistical analysis was done by C.S., M.P. and T.U., assisted by N.C. The manuscript was written by M.P., C.S. and T.U., assisted by all co-authors.

Additional information
Accession codes: Illumina raw sequence data is available through NCBI (Bioproject: PRJNA176598; Sequence Read Archive: SRA059441).

Supplementary Information accompanies this paper on http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Poulsen M et al. Methyloptrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4:1428 doi: 10.1038/ncomms2432 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
Erratum: Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen

Morten Poulsen, Clarissa Schwab, Bent Borg Jensen, Ricarda M. Engberg, Anja Spang, Nuria Canibe, Ole Højberg, Gabriel Milinovich, Lena Fragner, Christa Schleper, Wolfram Weckwerth, Peter Lund, Andreas Schramm & Tim Urich

Nature Communications 4:1428 doi: 10.1038/ncomms2432 (2013); Published 5 Feb 2013; Updated 6 Jun 2013

During the production of this Article, the y axis of the left-hand bar chart in Fig. 1 was mislabelled with %o. In addition, the P value in Fig. 3b, fourth set of bars, was displaced to the top of the panel. The correct versions of both Figs 1 and 3 appear below.

Figure 1
Figure 3