Strain rate dependent calcite microfabric evolution – an experiment carried out by nature

Anna Rogowitz1*, Bernhard Grasemann1, Benjamin Huet1 and Gerlinde Habler2

1Department of Geodynamics and Sedimentology
University of Vienna
Althanstrasse 14
Wien, A-1090
Austria
anna.rogowitz@univie.ac.at
Phone number (Department): +43-1-4277-53462
bernhard.grasemann@univie.ac.at
benjamin.huet@univie.ac.at

2Department of Lithospheric Research
University of Vienna
Althanstrasse 14
Wien, A-1090
Austria
gerlinde.habler@univie.ac.at

Keywords
calcite; deformation mechanism; recrystallization mechanism; microfabric; strain localization
Abstract

A flanking structure developed along a secondary shear zone in calcite marbles, on Syros (Cyclades, Greece), provides a natural laboratory for directly studying the effects of strain rate variations on calcite deformation at identical pressure and temperature conditions. The presence and rotation of a fracture during progressive deformation caused extreme variations in finite strain and strain rate, forming a localized ductile shear zone that shows different microstructures and textures. Textures and the degree of intracrystalline deformation were measured by electron backscattered diffraction. Marbles from the host rocks and the shear zone, which deformed at various strain rates, display crystal-preferred orientation, suggesting that the calcite preferentially deformed by intracrystalline-plastic deformation. Increasing strain rate results in a switch from subgrain rotation to bulging recrystallization in the dislocation-creep regime. With increasing strain rate, we observe in fine-grained (3 μm) ultramylonitic zones a change in deformation regime from grain-size insensitive to grain-size sensitive. Paleowattmeter and the paleopiezometer suggest strain rates for the localized shear zone around 10^{-10} s$^{-1}$ and for the marble host rock around 10^{-12} s$^{-1}$. We conclude that varying natural strain rates can have a first-order effect on the microstructures and textures that developed under the same metamorphic conditions.

1. Introduction

Crystal-plastic deformation of calcite has been the focus of many experimental studies. Different initial grain sizes, strain rates, stresses, temperatures, dry/wet conditions and CO$_2$ partial pressures have been considered to investigate a wide range of deformation regimes (e.g. Schmid et al., 1980; Schmid et al., 1987; Rutter, 1995; De Bresser and Spiers, 1997; Pieri et al., 2001; Barnhoorn et al., 2004; Barber...
et al., 2007; Llana-Fúnez and Rutter, 2008; Liteanu et al., 2012; Rybacki et al., 2013).

Flow laws for the dislocation and diffusion creep fields have been determined with respect to strain rates, stresses and temperatures (e.g. De Bresser et al., 2002; Renner et al., 2002; Herwegh et al., 2003). Twinning on e-planes seems to be common during deformation of calcite rocks at temperatures below 400 °C (Ferrill et al., 2004). For crystallographic reasons total twinning in calcite would lead to a shear strain of $\gamma = 0.69$, under the simplifying assumption that the twin plane is oriented parallel to the shear-zone boundary (Schmid et al., 1987). Therefore, increasing strain requires the additional activation of intracrystalline slip (Rybacki et al., 2013).

Textures developed at small strain ($\gamma < 2$) are similar in a wide temperature range while at greater strain, textures vary with increasing temperature (Barnhoorn et al., 2004). Flow laws and deformation-mechanism maps suggest preferential deformation by grain-size sensitive mechanisms (GSS) at small grain sizes, whereas coarse-grained rocks deform by dislocation creep (Schmid et al., 1987).

Complementary to experimental studies, textural and microstructural investigations of natural calcite marbles characterized shear sense, flow type, deformation mechanisms, and pressure and temperature conditions (Vernon, 1981; Ratschbacher et al., 1991; Kurz et al., 2000; Bestmann et al., 2000; 2003; 2006; Trullenque et al., 2006; Oesterling et al., 2007; Austin et al., 2008). These studies also document a switch from twinning to dislocation creep regime with increasing strain. Recrystallization by subgrain rotation (SGR) and less common bulging (BLG) result in grain size reduction, which is often followed by the activation of GSS creep. However, a direct comparison of experimentally and naturally deformed calcite remains difficult because of the extreme difference between experimental and natural strain rates (Patterson, 1987).
In this study, we investigate deformation mechanisms within and outside the cross cutting element of a flanking structure developed in almost pure calcite marbles on Syros (Cyclades, Greece). Such a structure forms, when a planar inclusion of finite length (i.e. the cross cutting element, CE) deforms within a host rock resulting in the rotation of the CE and slip along it (Grasemann & Stüwe, 2001; Passchier, 2001). Due to the slip gradient along the CE, a heterogeneous strain field in the surrounding area causes marker layers to deform by normal and/or reverse drag (Reches and Eidelman, 1995; Passchier, 2001; Grasemann et al., 2005). Coeval with flanking fold development at low shear strain, deformation within the CE may record shear strain and strain rates, which are much greater than these background values (Grasemann et al., 2011; Fig.1). The flanking structure on Syros thus represents a natural experiment, where a specific marble was deformed at relatively small strain-rates in the host rock and at much greater strain rates within the CE under the same metamorphic conditions. The current study documents calcite microfabric evolution for natural geological conditions, providing the opportunity to study deformation and recrystallization mechanisms of calcite as a function of strain and strain rates. The consistency of experimentally determined flow laws, piezometer and paleowattmeter are tested with parameters derived from the calcite samples, which deformed under natural conditions.

2. Geological setting

The island of Syros (Greece) is part of the Cycladic blueschist belt that is situated in the back-arc of the Hellenic subduction zone, where the African plate is subducted northward beneath Eurasia (Papanikolaou, 1987; Wortel et al., 1993; Ring et al., 2003). In the Cycladic area, three main units can be distinguished, separated by tectonic contacts: (1) the para-autochthonous Basement Unit consisting of
metasediments and orthogneisses, (2) the Cycladic Blueschist Unit (CBU) composed of metasediments and metabasites, and (3) the Upper Unit made up of ophiolitic rocks, sediments and pre-Eocene metamorphic rocks (Bonneau, 1984; Robertson and Dixon, 1984). Two main metamorphic events affected the Cycladic area (Ring et al., 2010; Jolivet and Brun, 2010 and references therein): An Eocene blueschist- and eclogite-facies metamorphic event related to burial, stacking and exhumation of the CBU and Basement below the Upper Unit; and a younger Oligo-Miocene greenschist-facies event during crustal extension in the back-arc of the Hellenic subduction zone due to the slab-rollback of the African plate. On several Cycladic islands, Oligo-Miocene extension formed low-angle detachment faults exhuming the CBU from below the Upper Unit.

On Syros, both the CBU and the Upper Unit occur (Keiter et al. 2011 and references therein, Fig.2). The exposed rocks belonging to the CBU are mainly metagabbros, metabasites, metasediments and schists. The overlying Upper Unit, locally named the Vari Unit, consists of orthogneiss and mylonitic schists, and is considered to be juxtaposed by a brittle detachment fault during late Miocene (Ring et al. 2003). New findings however show that the structure of SE Syros is more complex. Detailed mapping by Soukis and Stockli (2013) showed that a third unit composed of chloritic schists, serpentinites and metabasites occurs in a tectonic position between the underlying CBU and the overlying Vari Unit, again juxtaposed by a detachment. Numerous petrological studies constrain the pressure-temperature evolution of the metamorphic rocks (e.g. Trotet et al., 2001b; Schumacher et al., 2008; Philippon et al., 2012), focusing mainly on the blueschist- and eclogite-facies conditions. The only data for the lower-greenschist-facies metamorphism were reported by Trotet et al. (2001b), suggesting active T-P conditions of 300-350 °C at 2 kb ar. In this temperature range, the pressure proposed by other authors in more speculative P-T paths is
approximately 4 kbar (Keiter et al., 2004; Schumacher et al., 2008, Fig.3). In general
an increase in greenschist-facies overprinting toward the SW Syros involves a NE-
SW to E-W stretching lineation with a top-to-the-NE and –E sense of shear (Trotet et
al., 2001a; Keiter et al., 2004; Philippon et al., 2011).

3. Material and Methods

3.1 Outcrop description

The investigated outcrop is located N of Delfini in the western part of Syros island at
the base of a several tens of meters marble layer in the CBU (Fig.2, UTM35 414840N
313839E, the reader is invited to download a high-resolution 3D-model of the outcrop
mapped with an unmanned aerial vehicle, from the electronic supplement). The
marble is composed of nearly pure, coarse grained calcite. Minor amounts of white
mica are dispersed between the calcite grains and, more rarely, concentrated in thin
layers. Slight differences in colour and dolomite content reflect the main foliation
(average orientation: 015/38, Fig.4a, b). A lineation is defined by the shape preferred
orientation of calcite and white mica (Fig.4b, average orientation: 090/11). Shear
zones and flanking structures indicate top-to-the-E shear consistent with the
observations of Trotet et al. (2001a) in this area of Syros.

We focused our study on one large flanking structure (Fig.4a) that is dominated by
one central CE characterized by a darker colour and a smaller grain size than the
host rock marble and orientated 005/50. The CE is 5 m long and its width varies from
1 to 2.5 cm. The angle between the CE and the marble is around 20°. In the vicinity
of the CE, the mylonitic foliation of the host rock records a reverse drag in both, the
hanging wall and the footwall of the structure and is offset by a top-to-the W shear
sense resulting in an angle of around 45° between marble foliation and CE right next
to the structure. The trace of the schistosity has an inflection point at the immediate
gmargin of the CE (Fig. 4d) indicating a change from reverse to normal drag close to
the widening CE (Exner and Grasemann, 2011). The displacement along the CE
varies from around 20 cm at the lower tip up to 120 cm at the center of the structure
(Fig. 4c).

The orientation of the CE with respect to the background shear direction and the
observed drag indicate that the studied flanking structure can be interpreted as an a-
type flanking fold (Grasemann and Stüwe, 2001), that formed during top-to-the-E
background shearing. Since close to the investigated outcrop, layer-perpendicular
fractures are overprinted by ductile shears of various magnitudes, we believe that the
studied flanking structured formed along such a crack, which operated as CE, rotated
into the shear direction and led to passive folding of the marble host-rock foliation
because of the antithetic slip gradient along the CE.

Three samples were collected from three different structural locations in and around
the flanking structure (Fig. 4a, d). Samples 1, 2 and 3 (later separated into 3a and 3b)
were collected, respectively, in the host rock at 1.5 m distance from the cross-cutting
element, in and around the cross-cutting element in a zone of 60 cm displacement
and in and around the cross-cutting element at its location of maximal displacement
of 120 cm.

Analogue and numerical models, and analytical solutions have shown that flanking
structures form at a small background shear strain of $\gamma < 5$ with a rotation rate of the
CE similar to a passive marker line (Exner et al., 2004; Kocher and Mancktelow,
2005; Reber et al., 2012). Flanking structures are therefore kinematic indicators
restricted to low strain. Assuming simple shear deformation, it is possible to calculate
the shear strain, for the flanking structure from the geometric relationship between

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
the orientation of a passive marker before and after deformation (Ramsay and Huber, 1983):

\[\gamma = \cot(\alpha) - \cot(\alpha') \]

where \(\alpha \) and \(\alpha' \) are respectively the orientation of the passive marker with respect to the simple shear direction before and after deformation. Assuming an initial orientation of the fracture to be perpendicular to the foliation (\(\alpha = 90^\circ \)) and considering the orientation of the CE after deformation (\(\alpha' = 20^\circ \)), the background shear strain that formed the flanking structure was \(\gamma < 3 \). This value corresponds to the shear strain recorded by sample 1. Note that \(\gamma \) does not change dramatically, when the flow is not ideal simple shear (further information on the calculation of the overall background-shear strain can be found in the appendix A2).

At the position of sample 2, the offset of the marker layers indicates 64 cm displacement along the CE and the CE has a thickness of 1.2 cm. Assuming simple shear the shear strain is \(\gamma = 53 \). Sample 3 comes from the centre of the CE where the displacement is at its maximum of 120 cm and the CE is 1.5 cm thick. Assuming homogeneous simple shear, the values correspond to a shear strain \(\gamma = 80 \). At this locality, two very fine-grained, porcelain-like layers flank the CE. If we assume that these fine-grained layers with a total thickness of 0.12-0.48 cm, accommodated most of the displacement, the shear strain is in the range of \(250 < \gamma < 1000 \). Because of the macroscopic heterogeneous appearance, sample 3 was further split for analysis into coarser grained sample 3a and a sample 3b comprising the fine-grained-localized zones. Based on our microtectonic studies we separate three strain domains: low-strain domain (sample 1 and 3a), intermediate-strain domain (sample 2) and high-strain domain (sample 3b). Finally, assuming that the microstructures in
the three strain domains formed simultaneously, the three shear-strain domains also
reflect strain-rate domains. Consequently, when the flanking structure formed, the
strain rate in the CE was up to three orders of magnitude greater than in the host
rock. Given the model for flanking structures, the strain rate at a given point can be
assumed as constant, and therefore, this well-preserved structure can be regarded
as a result of a progressive ductile deformation.

3.2 Sample preparation

The samples were cut in the inferred local XZ plane of finite strain. Sample 1 was cut
perpendicular to the main foliation and parallel to the stretching lineation. Samples 2,
3a and 3b were cut perpendicular to the CE boundary and parallel to the stretching
lineation of the CE. It must therefore be emphasized that the sample reference
frames are different. They are all cut along an approximately vertical plane striking E-
W but differ by an up to 45° rotation around a horizontal N-S axis.

Mechanically polished thin-sections with a thickness of about 20 to 30 μm were
prepared for microstructure analysis. Thin sections selected for scanning electron
microscopy and electron backscatter diffraction analysis (EBSD) were additionally
chemomechanically polished with an alkaline colloidal silica suspension (Köstrosol
3530; pH 9.2-10). These samples were coated with a thin carbon film to establish
electric conductivity.

3.3 Microstructure analysis

Microstructure and modal composition of the samples were analysed with a Leica
DM4500 P optical microscope. Optical micrographs were taken with plane and
crossed polarized light (Fig.5, 6).
Digitized optical micrographs and EBSD data were used for grain shape analysis. The grain parameters were automatically measured by using the DiAna V3 software (© J. Duyster). The 2D-orientation of the grain long axes are presented in rose diagrams to show shape preferred orientation (SPO) within the fabric (Fig.5, insets). The orientations are given in degrees, anticlockwise with respect to the reference frame. The grain size is characterized by the equivalent diameter d that is calculated as follows:

$$d = 2\sqrt{\frac{A}{\pi}},$$

Eq. 2

where A is the grain area. For the different samples and microstructural areas, the distribution of grain size is represented in histograms and the mean grain sizes and standard deviation are reported (Fig.7).

3.4 Texture analysis

Crystallographic preferred orientations (CPOs), grain-shape parameters and the grade of intracrystalline deformation in terms of misorientation were measured by combined EBSD mapping and EDX-spectrometry on a FEI Quanta 3D FEG instrument. The FIB-SEM is equipped with a field-emission electron source and an EDAX Pegasus Apex 4 system consisting of a Digiview IV EBSD camera and an Apollo XV silicon drift detector for EDX-spectrometry. The instrument was operated with a 10 or 15 kV accelerating voltage, a 4 nA probe current and at working distances ranging between 10 and 14 mm and a sample tilt angle of 70°. Different calcite microfabric areas were mapped by beam scanning in square or hexagonal grid mode using a fixed step size in a range between 0.25 and 3.7 μm specifically chosen depending on the grain size. During data collection, the EBSD camera was set to an exposure time of 47 - 103 ms using a camera binning of 4x4 (348x260 pixel).
or 8x8 (174x130 pixel). The Hough space resolution was set to a binned pattern size of 140-160 and a Theta step size of 1°. A Rho fraction of 80-85 % was used for band detection and indexing in order to exclude weak marginal portions of the EBSD pattern. For all data, a 9x9 convolution mask was applied to determine 6-10 or 6-12 peaks at a minimum peak distance of 10-15 pixels in Hough space. With the given settings, indexing rates of 10-21 points per second were achieved.

The OIM Data Collection and Analysis software were used for indexing and processing the EBSD data. Indexing of Kikuchi patterns was based on EDX intensity ranges for specific elements to identify the phases by composition. Grain boundaries were set at a misorientation angle greater than 15° between adjacent points. For detailed texture analysis, host grains and recrystallized grains were separated according to their size and shape. Orientation distribution functions (ODFs) were calculated after Bunge (1982). The orientation of the c (0001), -a <11-20>, a <-1-120> axes and r planes {10-14} were derived from the ODF by use of the MATLAB toolbox for quantitative texture analysis MTEX (https://code.google.com/p/mtex, Bachmann et al., 2010). The data are plotted as equal area upper hemisphere projections (Fig.8).

The misorientation-angle distributions of neighbouring grains (correlated) and for every grain related to every other grain, belonging to one grain population (uncorrelated, see for example Halfpenny et al, 2012), was detected by the OIM Data Analysis software and are represented together with the calculated theoretical, random misorientation-distribution curve for trigonal crystal symmetry (Fig.9, Mackenzie and Thomson, 1957).

4. Results
Microfabrics for the different strain domains are described in terms of grain size distribution, SPO, texture and misorientation-angle distribution. Using the terminology of Sibson (1977) the marble microstructures are distinguished based on the fraction of recrystallized grains:

protomylonites, mylonites and ultramylonites have less than 50% fractions, 50% to 90% fractions and more than 90% fractions recrystallized grains, respectively. Additionally, fine grained ultramylonites are ultramylonites having an average grain size less than 9 μm.

4.1 Marble microfabric in the low-strain domain

The microstructure of the low-strain domain marble is characterized by coarse calcite grains with a grain size around 300 μm (Fig.5a, b). Within dolomite-rich layers (dolomite fraction larger than 20%), calcite grains are smaller with grain sizes ranging between 25 and 245 μm. The grain-size-distribution plot shows two peaks, one well defined at 150 μm and a second less pronounced at 300 μm (Fig.7a). The grains show a strong SPO with the long axes oriented at 40°, consistent with the top-to-the E sense of shear in the host rock. Undulatory extinction and the minor presence of subgrain boundaries indicate intracrystalline deformation. Grain boundaries are slightly curved showing evidence of grain boundary migration (GBM). Conjugate narrow or tabular twins are observed corresponding to Type I and Type II twins respectively (Ferrill et al., 2004).

The texture of the low strain domain is mainly characterized by a strong maximum of c axis perpendicular to the foliation (Fig.8a). There is only a weak girdle arrangement of a and -a axes approximately 50° inclined to the foliation plane while the r planes...
do not record a preferred orientation. The observed clusters represent single crystal maxima.

Next to the CE (sample 3a), similar microstructural and textural features are rotated by an angle of 40° to 50°, consistent with the passive rotation of the main foliation due to the reverse drag close to the CE (Fig.8b). As a result, the long axes of the grains are parallel to the CE boundary (Fig.5b). Misorientation distribution curves for correlated and uncorrelated grains differ radically from the random misorientation distribution. They have a common peak located between 45 and 60° (Fig.9a). An additional peak occurs at 80° for the correlated grains and at 30° for uncorrelated grains.

4.2 Marble microfabric in the intermediate-strain domain

The microstructure of the intermediate-strain domain is characterized by a strong foliation (CE plane) defined by alternating protomylonitic and ultramylonitic layers (Fig.5c, d, g, h). Thickness measurements in thin sections, reached values up to 4 mm for protomylonitic and up to 800 μm for ultramylonitic layers.

Within protomylonite layers, the calcite grains are elongate and show strong intracrystalline deformation (Fig.5d, g). Undulatory extinction and curved twins are common. Locally, sutured twin- and grain-boundaries can be observed. Larger calcite porphyroclasts (average grain size 52 μm, Fig.7b) built-up of subgrains (average grain size 13 μm, Fig.7c) are surrounded by recrystallized grains with a similar size as the subgrains (average grain size of 9.5 μm, Fig.7d), creating a core-mantle structure. The recrystallized grains have a SPO oriented at 150° consistent with the antithetic top-to-the-W sense of shear in the CE (Fig.5d). The ultramylonitic layers consist of equigranular calcite (Fig.5c, h). The grain size ranges between 5 μm and
40 μm, with an average of 10 μm (Fig.7e). The grains show a strong SPO aligned at an angle of around 120° to 150° relative to the CE boundary defining a secondary foliation (Fig.5c, h). Notice that the recrystallized grains from the protomylonitic and ultramylonitic layers have similar grain size and SPO characteristics.

White mica grains within the protomylonitic layers lie parallel to the cross-cutting element boundary consistent with the stretching direction of the calcite grains (Fig.6a). Micas within the ultramylonitic layers are aligned with their long axes parallel to the long axes of recrystallized calcite grains (Fig.6b). Quartz is present as single grains lacking any evidence for a preferred orientation or intracrystalline deformation like undulatory extinction, bulging or subgrain formation and are therefore essentially behaving as rigid clasts.

The deformed calcite host grains show a strong point maximum of c axis inclined 30 to 40° to the z-axis of the pole figure while the a and –a axes show three maxima aligned on a girdle normal to the c axis (Fig.8c). The separated a and –a axes pole figures can be transformed into each other by a rotation of 180° around the crystal c axis. The texture contains a two-fold-symmetry axis parallel to y axis of the sample and records therefore a monoclinic symmetry.

The c axis of recrystallized grains from core-mantle structures within the protomylonitic layers and c axis of grains within the ultramylonitic layers are normal to the CE plane while the a and –a axes form a girdle in the CE plane (Fig.8d, e). There is no clear difference of a and –a axis distribution noticeable for the grains in the ultramylonitic layers. The texture corresponds therefore approximately to an orthorhombic symmetry with three two-fold-symmetry axes parallel to the sample z, y, and x axis respectively. The main maximum of the r poles is orientated slightly oblique to the pole of the CE plane.
Host grains, recrystallized grains of protomylonitic layers and grains of ultramylonitic layers within the intermediate strain zone show a clear CPO although an increasing amount of recrystallized grains is associated with a slight decrease in CPO strength (Fig. 8c, d, e). Disregarding differences in the intensity of the distribution, the texture of recrystallized grains is apparently the result of an anticlockwise rotation of the texture of the host grains around the sample y axis.

In the core-mantle structure, both misorientation-angle-distribution curves for correlated and uncorrelated grains differ from the random misorientation-angle distribution. Similar to the low-strain domain the curve for uncorrelated grains shows a peak at around 50° while the misorientation-angle-distribution curve for correlated grains shows a peak at 80° and higher frequencies at misorientation angles smaller 20° (Fig. 9b).

For the ultramylonitic layer, both curves also differ from the random one. The curve for uncorrelated grains is approximately the same as for the protomylonite but with a less distinct peak around 50 to 60° (Fig. 9d). Except for a small gain at low misorientation angles and slightly smaller frequencies at greater misorientation angles, the curve for correlated grains is similar to the curve for uncorrelated grains.

4.3 Marble microfabric in the high-strain domain

The microstructure of the high-strain domain is characterized by protomylonitic, ultramylonitic and fine-grained ultramylonitic layers. Fine grained ultramylonitic layers occur only close to the boundary between the cross-cutting element and the host rock. Thickness measurements in thin section reached values up to 1750 µm for protomylonitic, up to 1500 µm for ultramylonitic and up to 240 µm for fine-grained ultramylonitic layers.
In protomylonitic layers, core-mantle structures compare well to the intermediate-strain domain. They show intensely deformed calcite grains (average grain size 68 μm, Fig. 7f) that partly contain wedge shaped twins preferentially oriented with an angle of 150° with respect to the cross-cutting element boundary. The larger calcite grains contain a high amount of subgrains with an average grain size of 11.5 μm (Fig. 7g) and are surrounded by recrystallized with a similar average grain size (10.5 μm, Fig. 7h).

Recrystallized grains of ultramylonitic layers have an average grain size of 13 μm (Fig. 7i). Their long axes are aligned between 110° and 150°; the SPO is more pronounced than in the other domains (Fig. 5e). Close at the boundary to the fine-grained ultramylonite, a higher amount of small bulges can be observed at boundaries of ultramylonitic grains (Fig. 5k).

Fine-grained ultramylonitic layers have an average grain size of 3.3 μm (Fig. 7j). The grains show a weaker SPO than those in the ultramylonite (Fig. 5f). Locally triple-junctions with nearly dihedral 120° angles occur (Fig. 5k, l).

Within the protomylonitic layers, the calcite texture of host grains and surrounding recrystallized grains are similar (Fig. 8f, g). The c axis of host grains are oriented perpendicular to the CE plane, whereas three separated point maxima of a axes are aligned on a girdle within the CE plane. The recrystallized grains of the core-mantle structure show approximately the same CPO although less pronounced.

The texture of the new recrystallized grains from the ultramylonitic layers differs significantly from that of the intermediate-strain domain (Fig. 8h). The c axes of calcite grains in the ultramylonitic layers form a girdle normal to the lineation while the a and

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
a axes form point-maxima parallel to the lineation. The poles are aligned in a crossed girdle.

The texture of grains from the fine-grained ultramylonitic layers is weak with a texture index of 1.4. It differs from the texture of ultramylonitic grains by a 90° rotation around the sample z axis, leading to a point-maximum of a and –a axes in the centre of the pole figure and c axis arranged at the periphery of the pole figure (Fig.8i).

The distribution curve for misorientation angles of the protomylonite lack the peak at around 50 to 60° for uncorrelated grains reflected by all other microstructures so far. Instead, a local minimum around 40 to 50° can be observed for correlated and uncorrelated grains. Both curves show a peak around 80° characteristic for e-twinning in calcite (Fig.9c). The misorientation-angle distribution for uncorrelated ultramylonitic grains is bell-shaped with a maximum around 60°. The curve for correlated grains shows a strong peak at 80° (Fig.9e). In fine-grained ultramylonitic layers the misorientation curves for correlated and uncorrelated grains are very close to the theoretical curve for random grains (Fig.9f).

5. Discussion

5.1 Relative timing of microstructure development

The observed microstructures can be linked to the two different metamorphic events that affected Syros. On the one hand, within the low strain domain, the observed coarse calcite grains are likely the result of grain growth at elevated temperatures (Barnhoorn et al., 2004) during the blueschist or eclogite facies evolution of Syros metamorphic rocks (at 400-550 °C). Smaller grain sizes in this strain domain, are always correlated to the presence of greater amounts of dolomite grains. Therefore,
we assume that the presence of the second phase inhibits grain growth, causing a smaller calcite grain size (Olgaard and Evans, 1986, 1988; Tullis and Yund, 1982).

On the other hand, features related to ductile deformation within all three strain domains like curved grain boundaries, undulatory extinction, development of core-mantle structures and mylonitization are likely to be related to Miocene-greenschist-facies deformation. If these structures had formed during early blueschist-eclogite-facies metamorphism, they would have been annealed, producing straight grain boundaries and absence of undulatory extinction. A second source of evidence for development during greenschist-facies metamorphism is that experimental study of calcite annealing shows a switch in the r axes alignment, producing a preferential orientation of one r pole maxima in the shear plane and another one normal to the shear direction if annealing occurs (Barnhoorn et al., 2005). Such a texture is absent, so we infer that the crystallographic texture of these structures was not annealed, and postdated the earlier metamorphism. Another factor supporting deformation during greenschist-facies metamorphism is that the orientation of the recrystallized grain long axes within the host rock display top-to-the-east sense of shear observed on Syros during the later metamorphism (Keiter et al., 2004). The orientation deviation of the SPO as well as the CPO of the grains next to the CE is apparently caused by the passive rotation of the host rock foliation during flanking structure development (Grasemann et al., 2005). The observed angle of 40° to 50° is identical to the structural field measurements, texture and SPO indicating that the observed SPO and CPO preceded flanking-structure formation.

5.2 Strain-rate dependent calcite deformation and recrystallization mechanisms

Within the low-strain domain, the microfabric is characterized by preferentially orientated, coarse-grained calcite marble. The strong SPO with grain long axis
orientated at 40° to the foliation can result from top-to-the-E shearing during crystal plastic-deformation. The observed undulose extinction indicates the presence of geometrical necessary dislocations which may cause the development of a CPO (Hirth and Tullis, 1992). Although dissolution precipitation creep and stress-directed grain growth may also lead to the formation of a weak CPO (Bons and den Brok, 2000), these processes are not considered to be responsible for the observed SPO because crystal-plastic deformation can be directly linked with undulose extinction and presence of subgrains. Slightly curved grain boundaries are probably the result of grain-boundary migration (GBM) indicating that the deformation took place within the dislocation-creep regime. Temperatures above 200 °C, which have most likely prevailed in the investigated rocks, already activate dynamic recrystallization in calcite (Herwegh and Pfiffner, 2005), which is therefore likely to deform by GBM at moderate temperatures as observed by Spacek et al. (2001) and Kennedy and White (2001).

With increasing strain and strain rate, deformation results in further intracrystalline deformation of the grains and formation of small recrystallized grains along the boundaries of pre-existing grains. These protomylonitic zones are characterized by a core-mantle structure where host grains are surrounded by recrystallized grains. The fact that subgrains within the host grains and recrystallized grains show almost the same size indicates that SGR was the dominant recrystallization mechanism. Similar core-mantle structures occur already at low shear strains in naturally deformed calcite (Bestmann et al., 2000) and experimentally at shear strains between $2 < \gamma < 5$ (Schmid et al., 1987).

The surrounding recrystallized grains show a reorientation of the c axis perpendicular to the foliation whereas the a and -a axes form a girdle within the foliation plane.
strong difference in misorientation angle distribution curves for correlated and uncorrelated grains indicates a dependence of neighbouring grains, emphasizing that SGR was the dominant deformation mechanism (Bestmann et al. 2000; Wheeler et al., 2001). With progressive deformation, further recrystallization occurs resulting in the formation of ultramylonitic layers with more than 90% recrystallized grains. Due to grain-boundary alignment of the new recrystallized grains, a secondary foliation oblique to the CE-boundary develops (Barnhoorn et al., 2004). The change in texture symmetry from monoclinic to orthorhombic is most likely caused by activation of a different slip system.

Deformation at greater strain and strain rate results in similar microstructures as within the intermediate strain domain such as core-mantle structures and the development of ultramylonitic layers. Also in the high-strain domain, subgrains of host grains and surrounding recrystallized grains show a similar grain size, indicating that SGR was the dominant recrystallization mechanism implying that dislocation creep was active.

The greater amount of wedge-shaped deformation twins, within the host grains in the high-strain domain is accompanied by an increased frequency at 80° for misorientation angles of correlated grains (Bestmann et al., 2000; Burkhard, 1993).

The microstructure of the fine grained ultramylonite is characterized by (1) an extremely small grain size, (2) grain boundary triple junctions with nearly 120° angles (Fig. 5k,l), (3) a weak CPO with very low texture index (J = 1.4) and (4) a random misorientation distribution curve. The preferential location of small grains next to the ultramylonitic layer (average 13 μm) showing a greater amount of small bulges, indicates that the fine-grained ultramylonite developed at the expense of the ultramylonite. These observations can result from two different deformation
behaviours for the development of the fine-grained ultramylonitic layers. The fine grain size could result from brittle grain-size reduction followed by cataclastic flow, leading to the randomization of the misorientation distribution. Subsequent annealing of the microstructure could result in the development of a weak CPO. The second behaviour would be grain-size reduction by bulging (BLG) recrystallization during dislocation creep, followed by a grain-size sensitive (GSS) deformation mechanism, such as grain-boundary sliding (GBS). Again, a random misorientation distribution would be generated and at the same time, minor dislocation creep would have produced the observed weak CPO. Since we do not see any positive evidence for brittle deformation in the microstructure, but small bulges at grain boundaries of ultramylonitic grains, we assume BLG recrystallization to be the more likely mechanism. The greater strain-rate at the location of maximal displacement may have caused the switch from SGR to BLG at the same metamorphic conditions.

The dependence of the dynamic recrystallization mechanism on strain rate and temperature is well described for quartz (Hirth and Tullis, 1992; Stipp et al. 2002; Stipp and Kunze, 2008). Especially, GBM, SGR and BLG are activated in quartz aggregates with increasing strain rate and decreasing temperature (Stipp et al., 2002). For calcite such a clear characterization is missing. Nevertheless an increase in GBM activity occurs with increasing temperature and increasing strain (Schmid et al., 1987, Barnhoorn et al., 2004). The occurrence of SGR and BLG seems to be more simultaneously although BLG is less common in calcite (Pieri et al., 2001; Barnhoorn et al., 2004). Here, we can directly link the activation of BLG recrystallization to an increase in strain rate.

We infer that the fine grain size and random misorientation distribution curve for fine-grained ultramylonitic layers means that the dominant deformation mechanism was
GSS flow where grain-boundary sliding (GBS) was active and probably accommodated most of the strain (Schmid et al., 1987; Fliervoet, 1997; Bestmann and Prior, 2003). Nevertheless, GBS behaviour necessitates at least one more deformation mechanism to avoid overlaps between blocking grains and the formation of voids. In this particular case, we infer that the observed weak CPO indicates that minor dislocation creep was active with GBS.

The deformation behaviour of calcite at greater strain rates is comparable with the one at intermediate strain rates. SGR recrystallization seems to be the most common recrystallization mechanism over a wide strain rate range resulting in the formation of ultramylonitic layers. Nevertheless, different gliding systems can be activated with increasing strain rates leading to the formation of a different texture (Fig.8). Additionally, BLG recrystallization became more prevalent at greater strain rates, resulting in a smaller grain size for which GSS mechanisms are activated. The main observations from microstructures, textures, deformation- and recrystallization mechanism are illustrated in Figure 10. The microfabrics are linked to estimated strain and strain rates with the potential to act as a reference and standard for natural systems and also, serving as a comparison for experimental deformation results.

5.3 Comparison with experimental calibrations

A differential stress-grain size deformation-mechanism map for marble has been calculated using grain-size insensitive (GSI) calcite flow laws for dislocation creep (Renner et al., 2002) and GSS creep (Herwegh et al., 2003), which represents a combination of diffusion creep and GBS (see appendix A1). Based on the observed microfabrics and the top-to-the-East shear associated with the second metamorphic event on Syros, a deformation temperature corresponding with lower greenschist-facies conditions is used (300 °C). The boundary between the GSS and the GSI field,
which can be considered to correspond to stabilization of the grain size at values
balancing GSS and GSI creep (De Bresser et al., 1998, 2001) was calculated and
added to the map. Additionally, the paleowattmeter for calcite (Austin and Evans,
2009) and the paleopiezometers (Schmid, 1980; Rutter, 1995) linking stable grain
size and differential stress are plotted (Fig.11). Further information on used
calibrations is given in the appendix.

The differential stress and strain rate conditions of the different microstructures are
determined by assuming that the average grain size of the fine grained ultramylonite
represents a stable grain size. At a grain size of about 3 μm, both paleowattmeter
and field boundary are consistently indicating a differential stress of 200 MPa.
Differential stress conditions suggested by the paleopiezometer of Schmid (1980) are
slightly less at around 170 MPa. The differential stress conditions corresponding to
the remaining microfabrics are determined using the strain-rate ratios and the grain
sizes of the microstructures observed within the different strain domains. For the
stable grain size of the intermediate-strain domain (10 μm), the calculated differential
stress conditions vary significantly depending on the chosen paleo-piezometer/-
wattmeter. The field boundary and the paleopiezometer of Schmid (1980) are
consistent with our results, indicating a differential stress of around 45 MPa while the
paleowatmeter and the paleopiezometer by Rutter (1995) for SGR suggest greater
values of around 75 MPa and 150 MPa, respectively. Differential stresses for the low
-strain domain calculated by the paleopiezometer of Rutter (1995) for GBM agree
with our values of around 25 MPa.

Consistent with our microstructural observations, deformation starts within the
dislocation creep field (Fig.11, GSI) in all three strain domains. Progressive
deformation at constant strain rates, decreases grain size, shifting the resulting grain
size range closer to the field boundary. Decreasing grain size induces increasing viscosity at about $10^{0.5}$ Pa s, within the high- and intermediate-strain domains. This changing viscosity for constant strain rates indicates minor strain hardening during the dislocation creep. This evolution is consistent with the observed change from reverse to normal drag next to the CE, where the CE would have been widening during rotation and slip (Means, 1995; Pennacchioni and Mancktelow, 2007). Within the high-strain domain, the grain size decreases even further so that a GSS deformation mechanism is activated. The switch in deformation regime leads to strain softening as indicated decreasing viscosity with increasing strain rate. This softening evolution is consistent with extreme localization of the deformation in the fine-grained ultramylonite (Bestmann et al., 2000).

In the ultramylonite, calculated shear-strain rate values are between $10^{-9.5}$ s$^{-1}$ and 10$^{-10}$ s$^{-1}$. The calculated strain rate for the background shear, leading to the rotation of the cross-cutting element is around $10^{-12.5}$ s$^{-1}$, which lies at the higher bound of typical strain rates in shear zones at crustal levels (Pfiffner and Ramsay, 1982).

These predictions about deformation strain rates and differential stresses are in agreement with a deformation temperature of 300 °C. Deformation at higher temperatures would result in an unexpectedly high background shear-strain rate of around 10^{-11} s$^{-1}$, a value which is too great considering the small amount of intracrystalline deformation. Lower deformation temperatures would favour deformation in the ductile-brittle transition zone which we do not believe occurred given the preserved microstructures in the study area.

Our observations show that the field boundary theory as well as the calcite paleowattmeter (Austin and Evans, 2009) and the paleopiezometer of Schmid (1980) can be extrapolated to natural examples deformed at strain rates $> 10^{-12}$ s$^{-1}$. At lesser
strain rates, the paleowattmeter seems to underestimate conditions. In contrast the paleopiezometer of Rutter (1995) for SGR seems to result in slightly overestimated values while the one for GBM is consistent with our observations.

6. Conclusions

We used a flanking structure as a natural laboratory for studying the microfabric and effective deformation mechanisms of nearly pure calcite marble for lower greenschist facies conditions (∼300 °C) and different strain rates (10^{-12} to 10^{-9} s^{-1}). Natural strain-rates and grain sizes were compared with experimentally determined flow laws, paleowatt- and paleopiezo-meters, resulting to the following conclusions.

(1) The recrystallization mechanism of calcite changed with increasing strain rate from grain-boundary migration (GBM) to subgrain rotation (SGR) and finally bulging (BLG) recrystallization. SGR seems to be, however, the dominant recrystallization mechanism over a wide range of strain rates. The switch in recrystallization mechanism is accompanied by a decrease in grain size.

(2) Strain progressively localizes along fine-grained layers. Ultramylonitic layers evolve from mature core-mantle structures by SGR while fine-grained ultramylonitic layers developed from ultramylonitic layers by BLG recrystallization.

(3) The change of calcite textures indicate that activation of different gliding systems depends on different strain rates.

(4) Laboratory-determined flow laws for GSI creep (Renner et al., 2002) and GSS creep (Herwegh et al., 2003) are consistent with our observations regarding the activity of different creep regimes and the predictions for the evolution of hardening and softening at constant strain rates.
Paleostress calculated with the paleowattmeter of Austin and Evans (2009) and the paleopiezometer of Schmid (1980) give reliable results for calcite deformed at strain rates faster 10^{-12} s$^{-1}$. In contrast, the paleopiezometer of Rutter (1995) for SGR recrystallization seems to predict overestimated values.

The results of this study are only valid for the lower greenschist facies and high strain rates (10^{-12} to 10^{-9} s$^{-1}$). More work using well constrained natural high-strain calcite rocks at higher grade is needed to extend the validity of experimental calibrations at natural strain rates.

Acknowledgment

We thank the University of Vienna (grant number IK543002) for supporting the doctoral school DOGMA (“Deformation of geological materials”) and the Austrian Science Foundation FWF for funding the project “Mineral reactions and deformation in host-inclusion settings” (grant number I471-N19) as part of the international research group FOR741-DACH. Valuable discussions with Hugh Rice, Claudia Trepmann, Michel Bestmann and Dave Schneider are greatly appreciated. Detailed and insightful comments by the reviewers Joerg Renner and Michael Stipp are gratefully appreciated. We would also like to thank William M Dunne for editorial handling.

References

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Trullenque, G., Kunze, K., Heilbronner, R., Stünitz, H., Schmid, S.M., 2006. Microfabrics of calcite ultramylonites as records of coaxial and non-coaxial...

Figure Captions

Fig. 1. Schematic sketch of the development of an a-type flanking structure. a. Foliated host rock. b. A crack develops perpendicular to the host-rock foliation. C. Due to shearing the crack (i.e. CE) rotates, resulting in an antithetic offset along the crack. Note that the displacement of marker lines varies along the cross-cutting element (CE) leading to a spatial variation in strain (γ).

Fig. 2. Geological map of Syros (modified after Keiter et al. 2004). The arrow points to the location of the outcrop.

Fig. 3. P-T paths for Syros determined by Trotet et al. (2001), Keiter et al (2004) and Schumacher et al. (2008). LBS=lawsonite-blueshist. EBS=epidot-blueschist, GS=greenschist, A=amphibolite and PA=pumpellyite-actinolite (after Evans, 1990). The black box represents the P-T range of the deformation stage considered in this study.

Fig. 4. a. Sample locations within the outcrop. The inserted sketch shows the deflection of the passive markers (dotted lines). The CE has been retraced by a red line. b. Equal-area, lower hemisphere projection showing the orientation of the cross-cutting element, and the foliation and stretching lineation of the host rock. c. Diagram showing the displacement plotted over the distance along the cross-cutting element with respect to the bottom of the flanking structure. d. Close-up at the boundary of CE and host rock showing a switch from reverse to normal drag at location of the purple line (location shown in Figure 4a).

Fig. 5. Optical micrographs (crossed polarizers). Insets are rose diagrams showing the 2D orientation of the calcite grain long axes. N represents the total number of measured grains and max. the maximal percentage. In all micrographs left side corresponds to W. a. Coarse calcite grains (low-strain domain, sample 1) of the host
rock showing a weak undulatory extinction and a SPO with an angle of 40° relative to
the foliation. Locally sutured grain boundaries occur whereas twins are preferentially
straight and thin. b. Coarse calcite grains of the host rock (low-strain domain, sample
3a) showing undulatory extinction and sutured grain boundaries. Note that the grains
have been rotated with respect to the cross-cutting element leading to an alignment
parallel to the foliation. c. Equigranular, recrystallized calcite ultramylonite next to
protomylonite (intermediate-strain domain, sample 2). d. Protomylonitic calcite
showing a core-mantle structure with strongly deformed host grains surrounded by
recrystallized grains (intermediate-strain domain, sample 2). e. Equigranular,
recrystallized calcite ultramylonite (high-strain domain, sample 3b). f. Fine grained
ultramylonite layer (high-strain domain, sample 3b). g. Core-mantle structures
showing that subgrains and recrystallized grains have the same size (intermediate-
strain domain). White arrows point to location of subgrains and recrystallized grains.
h. Close-up of ultramylonitic calcite (intermediate-strain domain). i. Core-mantle
structure showing that subgrains and recrystallized have a similar size (high-strain
domain). White arrows point to the location of subgrains and recrystallized grains. j.
Close-up of ultramylonitic calcite (high-strain domain). k. Boundary between
ultramylonitic and fine-grained ultramylonitic calcite. Presence of fine grained
ultramylonite layer amongst mylonitic grains. Note the small bulges and triple
junctions (arrows). l. Close-up of fine grained ultramylonitic layer.

Fig. 6. Optical micrographs of mica (crossed polarizers). In all micrographs left side
 corresponds to W. a. Mica in protomylonitic layer aligned parallel to the cross-cutting
element boundary. b. Mica in mylonitic layer aligned parallel to long axes of
recrystallized grains.
Fig. 7. Grain-size histograms of dominant microstructures of low-strain (a.), intermediate-strain (b., c., d., e.) and high-strain domains (f., g., h., i., j.). Note that recrystallized grains of protomylonitic layers and ultramylonitic layers have almost the same grain size distribution. N= total number of analysed grains, d= mean grain size, s= standard deviation.

Fig. 8. Stereographic equal-area upper hemisphere projection of c (0001), -a <11-20>, a <-1-120> axes and r planes {10-14} of calcite. z, y and x show the sample axes, the black line (F) represents the foliation and the red line (CEB) the cross-cutting element boundary. a. Host rock (low strain domain, sample 1). b. Host rock next to cross-cutting element (low strain domain, sample 3a). c. Host grains of protomylonitic layer (intermediate-strain domain, sample 2). d. Recrystallized grains of protomylonitic layer (intermediate-strain domain, sample 2). e. Recrystallized grains of mylonitic layer (intermediate-strain domain, sample 2). f. Host grains of protomylonitic layer (high-strain domain, sample 3b). g. Recrystallized grains of protomylonitic layer (high-strain domain, sample 3b). h. Recrystallized grains of mylonitic layer (high-strain domain, sample 3b). i. recrystallized grains in ultramylonitic layer (high-strain domain, sample 3b).

Fig. 9. Misorientation angle distribution plots of dominant microstructures in low- (a.), intermediate-(b., d.) and high-strain domains (c., e., f.). N represent the total number of analysed grains.

Fig. 10. Table of microfabric characteristics of low-, intermediate- and high strain domains. Data in the first row have been mirrored with respect to the corresponding thin section in order to display all data in the same reference frame.

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 11. Recrystallized grain-size evolution in the low-strain (green), intermediate-strain (yellow) and high-strain (orange) domains plotted in a grain-size- vs. differential-stress deformation-mechanism map for calcite at 300 °C. Additionally the calcite paleowattmeter (Austin and Evans, 2009), the calcite paleopiezometers (Schmid, 1980; Rutter, 1995) and the viscosities for the corresponding mean grain sizes are given with the logarithmic scale. Flow laws by Renner et al. (2002) for GSI and Herwegh et al. (2003) for GSS creep. The isolines represent constant strain rates.
Appendix

A1.

For the calculation of the deformation mechanism map, we used the composite flow law after Ter Heege et al. (2004). The diffusion creep field was calculated applying the flow law by Herwegh et al. (2003) that represents a combination of diffusion creep and grain-boundary sliding.

\[
\dot{\gamma}_{GSS} = A \sigma \exp(-Q/R/T),
\]
Eq. 3

with \(n=1.1, m=3.3\), an activation energy \(Q=200 \text{ kJ/mol}\) and \(A=4.3 \times 10^7\).

For the dislocation creep field, we used the flow law by Renner et al. (2002) that is well suited for low-temperature data (De Bresser et al., 2002).

\[
\dot{\gamma}_{GSi} = A \sigma^{n} \exp(\sigma/\sigma_0) \exp(-Q/R/T),
\]
Eq. 4

with \(n=2\), \(Q=200 \text{ kJ/mol}\) and \(A=270\). \(\sigma_0\) calculated by the formula

\[
\sigma_0 = (\sigma+115 \cdot d^{0.5}) \cdot (T_m-T)/1000,
\]
Eq. 5

where \(T_m\) is the melting temperature and \(d\) the grain size.

Stresses were calculated with the paleopiezometer of Rutter (1995) for subgrain rotation recrystallization

\[
\sigma = 10^{2.91 \cdot d^{-0.88}},
\]
Eq. 6

and for grain-boundary migration recrystallization

\[
\sigma = 10^{3.43 \cdot d^{-0.89}},
\]
Eq. 7
and the paleopiezometer of Schmid (1980)

\[\sigma = 10^{2.69} \cdot d^{-1.02}, \]
Eq. 8

In all equations, \(\sigma \) is the differential stress and \(\dot{\gamma} \) the strain rate, \(R \) represents the gas constant and \(T \) the deformation temperature in K.

A2.

In this appendix, we derive a relationship between the amount of finite strain and the kinematic vorticity number for the outcrop. Isovolumetric plane strain is assumed so that the finite strain tensor within the shear zone reference framework can be written as a function of two positive unknown parameters: the longitudinal strain along the shear zone, \(k \), and the shear strain along the shear zone, \(\Gamma \)

\[D = \begin{bmatrix} k & \Gamma \\ 0 & 1/k \end{bmatrix} \]
Eq. 9

The crosscutting element formed as a crack initially perpendicular to the foliation plane, which is assumed to be parallel to the stretching eigenvector of finite strain (Fig.A1a). In the Mohr space, the initial direction the crack corresponds to the point CE and the direction of the stretching eigenvector corresponds to the point \(A_1 \). Since these directions were initially perpendicular, \(A_1 \) and CE are opposite points on the same diameter of the finite-strain Mohr circle of second kind (De Paor and Means, 1984; Fig.A1b). There coordinates are respectively \(A_1: (0, k) \) and CE: \((\Gamma, 1/k) \).

The crosscutting element has rotated by an angle \(\beta \) that we can deduce form field measurements of the angle between the rotated crosscutting element and the...
foliation plane. Therefore, the point CE is at the intersection between the finite strain Mohr circle and the line \(x = y \tan \beta \) (Fig.A1b). This gives us a relationship between \(k \) and \(\Gamma \):

\[
\Gamma = \tan \beta / k \tag{10}
\]

so that the coordinates of point CE are \((\tan \beta / k, 1/k)\). They are used for calculating the diameter of the finite-strain Mohr circle as the distance between points \(A_1 \) and CE:

\[
d = \sqrt{\tan^2 \beta + (k^2 - 1)^2} / k \tag{11}
\]

The diameter of the finite-strain Mohr circle is used as a proxy for strain in general shear since it is exactly equal to \(\Gamma \) in simple shear and it is equal to \(k - 1/k \) in pure shear.

Using geometry of the finite-strain Mohr circle, we can determine the coordinates of the center of the Mohr circle \(C \): \((\tan \beta / 2k, (k^2 + 1)/2k)\) and the point corresponding to the shortening finite strain eigenvector \(A_2 \): \((0, 1/k)\).

The angle between the two eigenvectors in the Mohr space is \(2\alpha \), where \(\alpha \) is the angle between the two eigenvectors in the physical space. The value of \(\cos 2\alpha \) can be calculated using a scalar product in the Mohr space between the vectors \(CA_1 \) and \(CA_2 \) divided by their norms:

\[
\cos 2\alpha = \frac{\tan^2 \beta - (k^2 - 1)^2}{\tan^2 \beta + (k^2 - 1)^2} \tag{12}
\]
where equation 11. has been used for calculating the norms of the vectors. The
kinematic vorticity W_k is then calculated following Bobyarchick (1986)

\[
W_k = \cos \alpha = \sqrt{\frac{1 + \cos 2\alpha}{2}},
\]

\[
= \sqrt{\frac{\tan^2 \beta}{\tan^2 + (k^2 - 1)^2}}
\]

Eq. 13

Finally, even though the value of k remains unknown (i.e. the Mohr circle is not
scaled), it is possible to plot the diameter of the finite-strain Mohr circle in an equation
as a function of the kinematic vorticity. Equation 13 is used for calculating:

\[
(k^2 - 1)^2 = \frac{\tan^2 \beta}{W_k^2} - \tan^2 \beta
\]

Eq. 14

and

\[
k = \sqrt{1 + \tan \beta \sqrt{1/W_k^2} - 1}
\]

Eq. 15

Equations 13 and 14 are introduced into equation 11:

\[
d = \frac{\tan \beta}{W_k \sqrt{1 + \tan \beta \sqrt{1/W_k^2 - 1}}}
\]

Eq. 16

Figure A1c represents the graph of d as a function of W_k using the average value of
the cross-cutting element rotation: $\beta = 70^\circ$. It shows that the bulk strain in the shear
was less than 3, if the kinematic vorticity number was larger than 0.29. Therefore,
even if the pure shear component responsible for the observed deformation was
large, the amount of bulk strain was most likely limited to values comprised between
2 and 3. Larger values of bulk strain would have “erased” the flanking structure.
Fig. 1
Vari + Upper Unit

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBU</td>
<td>Orthogneiss and mylonitic schists</td>
</tr>
<tr>
<td></td>
<td>HP rocks (mostly metabasic rocks)</td>
</tr>
<tr>
<td></td>
<td>Greenschist facies rocks (mostly metabasic rocks)</td>
</tr>
<tr>
<td></td>
<td>Marbles</td>
</tr>
<tr>
<td></td>
<td>HP- or greenschist facies clastic metasediments</td>
</tr>
<tr>
<td></td>
<td>Alluvium</td>
</tr>
<tr>
<td></td>
<td>Low-angle normal fault</td>
</tr>
</tbody>
</table>

Fig. 2
Fig. 3

This is an accepted manuscript version
The final paper is accessible via http://dx.doi.org/10.1016/j.jsg.2014.08.004

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 4

- n=8 (cross-cutting element)
- n=6 (foliation)
- n=6 (lineation)

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Figure 5

This is an accepted manuscript version. The final paper is accessible via http://dx.doi.org/10.1016/j.jsg.2014.08.004

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 5
Fig. 6
Fig. 7

- **Sample 1**
 - Host Rock

- **Sample 2**
 - Host Grains
 - Recrystallized Grains
 - Subgrains
 - Ultramylonite
 - Fine Grained Ultramylonite

- **Sample 3b**
 - Host Grains
 - Recrystallized Grains
 - Subgrains

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Figure 8

(0001) <11\overline{2}0> <1\overline{1}20> \{10\overline{1}4\}

a Sample 1
Host Rock

b Sample 3a
Host Rock

c Sample 2
Host Grains

d Sample 2
Recrystallized
Grains

e Sample 2
Ultramylonite

f Sample 3b
Host Grains

g Sample 3b
Recrystallized
Grains

h Sample 3b
Ultramylonite

i Sample 3b
Fine Grained
Ultramylonite

N=238
ODF max=9.3
Texture Index=9.9

N=1587
ODF max=7.6
Texture Index=5.8

N=169
ODF max=10.7
Texture Index=7.1

N=5170
ODF max=4.9
Texture Index=2.09

N=879
ODF max=3.8
Texture Index=1.9

N=25
ODF max=14.1
Texture Index=9.6

N=927
ODF max=4.4
Texture Index=2.0

N=2426
ODF max=4.2
Texture Index=2.1

N=2769
ODF max=2.5
Texture Index=1.4

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 9
<table>
<thead>
<tr>
<th>microstructure</th>
<th>average grain size</th>
<th>deformation mechanism</th>
<th>SPO recrystallized grains</th>
<th>c axis orientation</th>
<th>strain rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>218 µm</td>
<td>dislocation creep (GBM)</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-12.7} \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>52 µm</td>
<td>twinning, dislocation creep</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-11.5} \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>10 µm</td>
<td>dislocation creep (SGR)</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-11.3} \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>68 µm</td>
<td>twinning, dislocation creep</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-10.5} \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>13 µm</td>
<td>dislocation creep (SGR)</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-10.3} \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>3.3 µm</td>
<td>(BLG) GBS</td>
<td></td>
<td></td>
<td>$\dot{\gamma} = 10^{-9.5} \text{ s}^{-1}$</td>
</tr>
</tbody>
</table>

Fig. 10

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
Fig. 11
The diagram shows a Mohr circle with the diameter of the Mohr circle labeled. It also includes a triangle labeled CE before deformation and CE after deformation, with angles and lines indicating the physical space and Mohr space. The figure is labeled as Figure A1/physical space and Figure A1/Mohr space.