
EML, an Energy Measurement Library
Alberto Cabrera∗, Francisco Almeida† and Vicente Blanco†

∗ Instituto Tecnológico y de Energı́as Renovables. ITER
Granadilla, Tenerife. Spain

Email: acabrera@iter.es
† HPC Group. ETS de Ingenierı́a Informática

Universidad de La Laguna, ULL
La Laguna. 38270 Tenerife. Spain

Email: {falmeida, Vicente.Blanco}@ull.es

I. INTRODUCTION

Over the past years, energy aware computing has become
a hot topic in High Performance Computing (HPC), as the
work on the field towards the exascale computing has been
progressing. To achieve exascale performance, several aspects
of current computational models are being reviewed taking
into account the energy consumption.

In the case of the algorithmic analysis, approaches like
performance profiling and analytic modeling require good
measurement tools to achieve the goals without having to deal
with the concrete details of every hardware architecture and
their respective challenges, such as how to properly measure
energy.

Work in the field has been made to solve the problem of
energy measurement by authors like Bellosa [1], Ryffel [2]
and Ge et al. [3], but as the work was not directly available or
it was a hardware solution, we started to develop a portable
library called EML (Energy Measurement Library). With this
implementation it is possible to abstract the user from the
measuring tools, allowing to perform easiest measurement
and, depending on the grade of precision and intrusion that
we can have within the experiment, choose between external
measurements or code instrumentation, as shown in Figure
1. Uses for this kind of library are decision making and auto-
tuning based on energy consumption among other possibilities.
To achieve so, we offer an unified interface that has a backend
with implementeations for every measurement tool, which is
easy to extend.

We currently have for measuring energy consumption the
following implementations:

• PDU’s
• Intel MSR
• A cluster with a measurement frontend
Figure 2 illustrates an example of measurement within the

core using the Intel MSR Interface. It shows ten seconds of
three obtained power profiles that belong to an execution of
various matrix multiplications using the Intel MKL dgemm
routine. Power profiles PP0 and PP1 belong to the processor
while DRAM is the DIMM power consumption. Another ex-
ample of measurement is Figure 3. In this case, measurement
corresponds to an execution of High Performance Linpack, and

Fig. 2. Energy measurement from a processor using the Intel MSR RAPL
interface.

Fig. 3. Energy measurement using an external metered PDU from a monitor
node.

is taken directly from pdu outlets using 4 nodes. Both outputs
are logged in a file that can be formatted using timestamps
to synchronize energy measurement and program execution.
EML allows portability for our code in different architectures,
provided that the new machine is compatible with at least one
of the coded solutions.

II. DETAILS

The current software design is thought to minimize the
effort of adding code for new measurement tools. The simplest
option is to structure the library as a Factory Method design



Fig. 1. EML overview diagram. The upper part represents different hardware configurations (A processor that has Intel MSR RAPL, an external node
to monitor a cluster or direct access to a PDU. The lower part shows the two different ways of adquiring data: an external program that measures energy
consumption or code instrumentation. EML acts as a interconnection layer.

pattern, with every measurement tool represented as a class
implementing two possible methods:

• instant measurement. A method that returns the instant
energy consumption measured by the hardware.

• interval measurement. A method that returns the energy
measured in an interval defined by the user. To determine
the correct interval, this method is called following the
classical time measurement: before and after performing
the operation that requires measurement.

This involves a few challenges. First, the measurement
tools we have encountered have one of the two methods
directly available, so the second method has to be derived
from the values obtained from the available one. From
instant measurement to interval measurement the operation
consists on measuring on the best possible interval given
by the hardware constraints and then performing the cor-
respondent integrating operation. The opposite, from inter-
val measurement to instant measurement, is implemented in
a similar way. Measurement is done on a given interval, then
the instant value in watts is equal to the amount of energy
resulting from resolving the equation

P =
E

s
(1)

P is our instant power consumption, obtained thanks to the
energy E measured every s seconds.

Our second challenge is to unify the different information
obtained by the different energy measurement tools that could
generate confusion. Given the concrete case of the Intel RAPL
MSR and our metered PDU, the first obtains energy for a
processor, separated in three different measures: the core itself,
the RAM DIMMs and what Intel calls the uncore which, in
Sandy Bridge platforms, measures the energy of the on–chip
graphics processor. The latter returns the energy of a whole
node. For now this is resolved by tagging the measurement
taken. For future work, we pretend to extend EML capabilities
to facilitate the analysis of the data offering different outputs
such as XML.

III. ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Ed-
ucation and Science through the TIN2011-24598 project and
the Spanish network CAPAP-H4.

REFERENCES

[1] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in ACM SIGOPS European Workshop. ACM, 2000,
pp. 37–42.

[2] S. Ryffel, “Lea2p: The linux energy attribution and accounting platform,”
Master’s thesis, Swiss Federal Institute of Technology, 2009.

[3] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
“Powerpack: Energy profiling and analysis of high-performance systems
and applications,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 5, pp.
658–671, 2010.


